Maximization of functionals in $H^\omega [a,b]$
Sbornik. Mathematics, Tome 189 (1998) no. 2, pp. 159-226

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure and the properties of the extremal functions in the problem $$ \int _a^b h(t)\psi (t)\,dt\to \sup, \qquad h\in H^\omega [a,b], $$ are described in the case when $\psi$ is an integrable function with zero mean and finitely many points of sign change on $[a,b]$ and $H^\omega [a,b]$ is the class of absolutely integrable functions on $[a,b]$ with modulus of continuity majorized by a fixed convex modulus of continuity $\omega$.
@article{SM_1998_189_2_a0,
     author = {S. K. Bagdasarov},
     title = {Maximization of functionals in $H^\omega [a,b]$},
     journal = {Sbornik. Mathematics},
     pages = {159--226},
     publisher = {mathdoc},
     volume = {189},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_2_a0/}
}
TY  - JOUR
AU  - S. K. Bagdasarov
TI  - Maximization of functionals in $H^\omega [a,b]$
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 159
EP  - 226
VL  - 189
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_2_a0/
LA  - en
ID  - SM_1998_189_2_a0
ER  - 
%0 Journal Article
%A S. K. Bagdasarov
%T Maximization of functionals in $H^\omega [a,b]$
%J Sbornik. Mathematics
%D 1998
%P 159-226
%V 189
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_2_a0/
%G en
%F SM_1998_189_2_a0
S. K. Bagdasarov. Maximization of functionals in $H^\omega [a,b]$. Sbornik. Mathematics, Tome 189 (1998) no. 2, pp. 159-226. http://geodesic.mathdoc.fr/item/SM_1998_189_2_a0/