Maximization of functionals in $H^\omega [a,b]$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 189 (1998) no. 2, pp. 159-226
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The structure and the properties of the extremal functions in the problem 
$$
\int _a^b h(t)\psi (t)\,dt\to \sup, \qquad h\in H^\omega [a,b],
$$
are described in the case when $\psi$ is an integrable function with zero mean and finitely many points of sign change on $[a,b]$ and $H^\omega [a,b]$ is the class of absolutely integrable functions on $[a,b]$ with modulus of continuity majorized by a fixed convex modulus of continuity $\omega$.
			
            
            
            
          
        
      @article{SM_1998_189_2_a0,
     author = {S. K. Bagdasarov},
     title = {Maximization of functionals in $H^\omega [a,b]$},
     journal = {Sbornik. Mathematics},
     pages = {159--226},
     publisher = {mathdoc},
     volume = {189},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_2_a0/}
}
                      
                      
                    S. K. Bagdasarov. Maximization of functionals in $H^\omega [a,b]$. Sbornik. Mathematics, Tome 189 (1998) no. 2, pp. 159-226. http://geodesic.mathdoc.fr/item/SM_1998_189_2_a0/
