A~class of Sturm--Liouville operators and approximate calculation of the first eigenvalues
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 189 (1998) no. 1, pp. 129-145
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A special class $S$ of Sturm–Liouville operators with simple asymptotic  properties of eigenfunctions is investigated. The analytic properties of the potentials  are analyzed and the operators in this class are described in terms of the transition  function of the inverse problem. The following result is established: the class $S$ is dense in the set of Sturm–Liouville operators with potentials in $L_2$. A subset of $S$ that also has the density property is effectively distinguished. Based on the properties of the operators in this subset, a method of the approximate evaluation of the first eigenvalues of a Sturm–Liouville operator through its regularized traces is proposed and substantiated.
			
            
            
            
          
        
      @article{SM_1998_189_1_a6,
     author = {V. A. Sadovnichii and V. E. Podolskii},
     title = {A~class of {Sturm--Liouville} operators and approximate calculation of the first eigenvalues},
     journal = {Sbornik. Mathematics},
     pages = {129--145},
     publisher = {mathdoc},
     volume = {189},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_1_a6/}
}
                      
                      
                    TY - JOUR AU - V. A. Sadovnichii AU - V. E. Podolskii TI - A~class of Sturm--Liouville operators and approximate calculation of the first eigenvalues JO - Sbornik. Mathematics PY - 1998 SP - 129 EP - 145 VL - 189 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1998_189_1_a6/ LA - en ID - SM_1998_189_1_a6 ER -
V. A. Sadovnichii; V. E. Podolskii. A~class of Sturm--Liouville operators and approximate calculation of the first eigenvalues. Sbornik. Mathematics, Tome 189 (1998) no. 1, pp. 129-145. http://geodesic.mathdoc.fr/item/SM_1998_189_1_a6/
