Birational automorphisms of a three-dimensional double quadric with an elementary singularity
Sbornik. Mathematics, Tome 189 (1998) no. 1, pp. 97-114
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the group of birational automorphisms of a three-dimensional double quadric with a singular point arising from a double point on the branch divisor is a semidirect product of the free group generated by birational involutions of a special form and the group of regular automorphisms. The proof is based on the method of 'untwisting' maximal singularities of linear systems.
@article{SM_1998_189_1_a4,
author = {M. M. Grinenko},
title = {Birational automorphisms of a~three-dimensional double quadric with an~elementary singularity},
journal = {Sbornik. Mathematics},
pages = {97--114},
year = {1998},
volume = {189},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_1_a4/}
}
M. M. Grinenko. Birational automorphisms of a three-dimensional double quadric with an elementary singularity. Sbornik. Mathematics, Tome 189 (1998) no. 1, pp. 97-114. http://geodesic.mathdoc.fr/item/SM_1998_189_1_a4/
[1] Iskovskikh V. A., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii”, Itogi nauki i tekhniki. Sovr. probl. matem., 12, VINITI, M., 1979, 159–236 | MR
[2] Iskovskikh V. A., Manin Yu. A., “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Matem. sb., 86 (128):1 (1971), 140–166 | MR | Zbl
[3] Pukhlikov A. V., “Biratsionalnye avtomorfizmy trekhmernoi kvartiki s prosteishei osobennostyu”, Matem. sb., 135 (177):4 (1988), 472–496 | MR | Zbl
[4] Pukhlikov A. V., “Biratsionalnye avtomorfizmy dvoinogo prostranstva i dvoinoi kvadriki”, Izv. AN SSSR. Ser. matem., 52:1 (1988), 229–239 | MR
[5] Pukhlikov A. V., Essentials of the method of maximal singularieties, Warwick Preprints: 31/1996 | MR