An example of a finitely presented amenable group not belonging to the class $EG$
Sbornik. Mathematics, Tome 189 (1998) no. 1, pp. 75-95
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An example of a finitely presented amenable group not belonging to the class $EG$ of elementary amenable groups is constructed. By this means, a solution of the Day problem in the class of finitely presented groups is given.
@article{SM_1998_189_1_a3,
     author = {R. I. Grigorchuk},
     title = {An example of a~finitely presented amenable group not belonging to the~class~$EG$},
     journal = {Sbornik. Mathematics},
     pages = {75--95},
     year = {1998},
     volume = {189},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_1_a3/}
}
TY  - JOUR
AU  - R. I. Grigorchuk
TI  - An example of a finitely presented amenable group not belonging to the class $EG$
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 75
EP  - 95
VL  - 189
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_1_a3/
LA  - en
ID  - SM_1998_189_1_a3
ER  - 
%0 Journal Article
%A R. I. Grigorchuk
%T An example of a finitely presented amenable group not belonging to the class $EG$
%J Sbornik. Mathematics
%D 1998
%P 75-95
%V 189
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1998_189_1_a3/
%G en
%F SM_1998_189_1_a3
R. I. Grigorchuk. An example of a finitely presented amenable group not belonging to the class $EG$. Sbornik. Mathematics, Tome 189 (1998) no. 1, pp. 75-95. http://geodesic.mathdoc.fr/item/SM_1998_189_1_a3/

[1] Banach S., “Sur le probleme de la mesure”, Fund. Math., 4 (1923), 7–33 | Zbl

[2] von Neumann J., “Zur allegemeinen Theorie des Maßes”, Fund. Math., 13 (1929), 73–116 | Zbl

[3] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, T. 1, Mir, M., 1975

[4] Edvards R., Funktsionalnyi analiz, Mir, M., 1969

[5] Grinlif F., Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1973

[6] Pier J.-P., Amenable locally compact groups, Pure and Applied Mathematics. A Wiley-Interscience Publication, John Wiley Sons, New York, 1984 | MR

[7] Wagon S., The Banach–Tarski Paradox, Cambridge Univ. Press, Cambridge, 1985 | MR | Zbl

[8] Stëpin A. M., Metricheskie i spektralnye svoistva dinamicheskikh sistem i grupp preobrazovanii, Dis. $\dots$ dokt. fiz.-matem. nauk, MGU, M., 1986

[9] Ceccherini-Silberstein T., Grigorchuk R., de la Harpe P., Amenability and paradoxis for pseudogroups and for metric spaces, Preprint, Geneva, 1997 | MR

[10] Kurosh A. G., Teoriya grupp, Nauka, M., 1967 | MR | Zbl

[11] Day M. M., “Amenable semigroups”, Illinois J. Math., 1 (1957), 509–544 | MR | Zbl

[12] Chou C., “Elementary amenable groups”, Illinois J. Math., 24 (1980), 396–407 | MR | Zbl

[13] Grigorchuk R. I., “K probleme Milnora o gruppovom roste”, Dokl. AN SSSR, 271:1 (1983), 30–33 | MR

[14] Grigorchuk R. I., “Stepeni rosta konechno-porozhdennykh grupp i teoriya invariantnykh srednikh”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 939–985 | MR

[15] Milnor J., “Problem 5603”, Amer. Math. Monthly, 75:6 (1968), 685–686 | DOI | MR

[16] Cannon J. W., Floyd W. J., Parry W. R., “Introductory notes on Richard Thompson's groups”, Enseign. Math. (2), 42:3–4 (1996), 215–256 | MR | Zbl

[17] Grigorchuk R. I., “K probleme Bernsaida o periodicheskikh gruppakh”, Funkts. analiz i ego prilozh., 14:1 (1980), 53–54 | MR | Zbl

[18] Lysënok I. G., “O sisteme opredelyayuschikh sootnoshenii gruppy Grigorchuka”, Matem. zametki, 38:4 (1985), 503–516 | MR | Zbl

[19] Stepin A. M., “Approximation of groups and group actions, the Cayley topology”, Ergodic Theory of $\mathbb Z^d$-actions, Proceedings of the Warwick symposium (Warwick, UK, 1993–1994), Lond. Math. Soc. Lect. Note, 228, eds. M. Pollicott, K. Schmidt, Cambridge Univ. Press, New York, 1996, 475–484 | MR | Zbl

[20] Gromov M., “Groups of polynomial growth and expanding maps”, Publ. Math. IHES, 53 (1981), 53–73 | MR

[21] Baumslag G., Topics in Combinatorial Group Theory, Birkhäuser, Basel, 1993 | MR | Zbl

[22] Adelson-Velskii G. M., Shreider Yu. A., “Banakhovo srednee na gruppakh”, UMN, 12:6 (1957), 131–136 | MR | Zbl

[23] Salomaa A., Soittola M., Automata-theoretic aspects of formal power series, Springer-Verlag, New York, 1978 | MR

[24] Grigorchuk R. I., “O ryade Gilberta–Puankare graduirovannykh algebr, assotsiirovannykh s gruppami”, Matem. sb., 180:2 (1989), 207–225 | MR | Zbl