@article{SM_1998_189_1_a3,
author = {R. I. Grigorchuk},
title = {An example of a~finitely presented amenable group not belonging to the~class~$EG$},
journal = {Sbornik. Mathematics},
pages = {75--95},
year = {1998},
volume = {189},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_1_a3/}
}
R. I. Grigorchuk. An example of a finitely presented amenable group not belonging to the class $EG$. Sbornik. Mathematics, Tome 189 (1998) no. 1, pp. 75-95. http://geodesic.mathdoc.fr/item/SM_1998_189_1_a3/
[1] Banach S., “Sur le probleme de la mesure”, Fund. Math., 4 (1923), 7–33 | Zbl
[2] von Neumann J., “Zur allegemeinen Theorie des Maßes”, Fund. Math., 13 (1929), 73–116 | Zbl
[3] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, T. 1, Mir, M., 1975
[4] Edvards R., Funktsionalnyi analiz, Mir, M., 1969
[5] Grinlif F., Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1973
[6] Pier J.-P., Amenable locally compact groups, Pure and Applied Mathematics. A Wiley-Interscience Publication, John Wiley Sons, New York, 1984 | MR
[7] Wagon S., The Banach–Tarski Paradox, Cambridge Univ. Press, Cambridge, 1985 | MR | Zbl
[8] Stëpin A. M., Metricheskie i spektralnye svoistva dinamicheskikh sistem i grupp preobrazovanii, Dis. $\dots$ dokt. fiz.-matem. nauk, MGU, M., 1986
[9] Ceccherini-Silberstein T., Grigorchuk R., de la Harpe P., Amenability and paradoxis for pseudogroups and for metric spaces, Preprint, Geneva, 1997 | MR
[10] Kurosh A. G., Teoriya grupp, Nauka, M., 1967 | MR | Zbl
[11] Day M. M., “Amenable semigroups”, Illinois J. Math., 1 (1957), 509–544 | MR | Zbl
[12] Chou C., “Elementary amenable groups”, Illinois J. Math., 24 (1980), 396–407 | MR | Zbl
[13] Grigorchuk R. I., “K probleme Milnora o gruppovom roste”, Dokl. AN SSSR, 271:1 (1983), 30–33 | MR
[14] Grigorchuk R. I., “Stepeni rosta konechno-porozhdennykh grupp i teoriya invariantnykh srednikh”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 939–985 | MR
[15] Milnor J., “Problem 5603”, Amer. Math. Monthly, 75:6 (1968), 685–686 | DOI | MR
[16] Cannon J. W., Floyd W. J., Parry W. R., “Introductory notes on Richard Thompson's groups”, Enseign. Math. (2), 42:3–4 (1996), 215–256 | MR | Zbl
[17] Grigorchuk R. I., “K probleme Bernsaida o periodicheskikh gruppakh”, Funkts. analiz i ego prilozh., 14:1 (1980), 53–54 | MR | Zbl
[18] Lysënok I. G., “O sisteme opredelyayuschikh sootnoshenii gruppy Grigorchuka”, Matem. zametki, 38:4 (1985), 503–516 | MR | Zbl
[19] Stepin A. M., “Approximation of groups and group actions, the Cayley topology”, Ergodic Theory of $\mathbb Z^d$-actions, Proceedings of the Warwick symposium (Warwick, UK, 1993–1994), Lond. Math. Soc. Lect. Note, 228, eds. M. Pollicott, K. Schmidt, Cambridge Univ. Press, New York, 1996, 475–484 | MR | Zbl
[20] Gromov M., “Groups of polynomial growth and expanding maps”, Publ. Math. IHES, 53 (1981), 53–73 | MR
[21] Baumslag G., Topics in Combinatorial Group Theory, Birkhäuser, Basel, 1993 | MR | Zbl
[22] Adelson-Velskii G. M., Shreider Yu. A., “Banakhovo srednee na gruppakh”, UMN, 12:6 (1957), 131–136 | MR | Zbl
[23] Salomaa A., Soittola M., Automata-theoretic aspects of formal power series, Springer-Verlag, New York, 1978 | MR
[24] Grigorchuk R. I., “O ryade Gilberta–Puankare graduirovannykh algebr, assotsiirovannykh s gruppami”, Matem. sb., 180:2 (1989), 207–225 | MR | Zbl