Self-dual geometry of generalized Hermitian surfaces
Sbornik. Mathematics, Tome 189 (1998) no. 1, pp. 19-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Several results on the geometry of conformally semiflat Hermitian surfaces of both classical and hyperbolic types (generalized Hermitian surfaces) are obtained. Some of these results are generalizations and clarifications of already known results in this direction due to Koda, Itoh, and other authors. They reveal some unexpected beautiful connections between such classical characteristics of conformally semiflat (generalized) Hermitian surfaces as the Einstein property, the constancy of the holomorphic sectional curvature, and so on. A complete classification of compact self-dual Hermitian $RK$-surfaces that are at the same time generalized Hopf manifolds is obtained. This provides a complete solution of the Chen problem in this class of Hermitian surfaces.
@article{SM_1998_189_1_a1,
     author = {O. E. Arsen'eva and V. F. Kirichenko},
     title = {Self-dual geometry of generalized {Hermitian} surfaces},
     journal = {Sbornik. Mathematics},
     pages = {19--41},
     year = {1998},
     volume = {189},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_1_a1/}
}
TY  - JOUR
AU  - O. E. Arsen'eva
AU  - V. F. Kirichenko
TI  - Self-dual geometry of generalized Hermitian surfaces
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 19
EP  - 41
VL  - 189
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_1_a1/
LA  - en
ID  - SM_1998_189_1_a1
ER  - 
%0 Journal Article
%A O. E. Arsen'eva
%A V. F. Kirichenko
%T Self-dual geometry of generalized Hermitian surfaces
%J Sbornik. Mathematics
%D 1998
%P 19-41
%V 189
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1998_189_1_a1/
%G en
%F SM_1998_189_1_a1
O. E. Arsen'eva; V. F. Kirichenko. Self-dual geometry of generalized Hermitian surfaces. Sbornik. Mathematics, Tome 189 (1998) no. 1, pp. 19-41. http://geodesic.mathdoc.fr/item/SM_1998_189_1_a1/

[1] Tricerri F., Vaisman I., “On some $2$-dimensional Hermitian manifolds”, Math. Z., 192 (1986), 205–216 | DOI | MR | Zbl

[2] Vaisman I., “Some curvature properties of complex surfaces”, Ann. Math. Pura Appl. (4), 32 (1982), 1–18 | DOI | MR

[3] De Andres L. C., Cordero L. A., Fernandes M., Mencia J. J., “Examples of four-dimensional compact locally conformal Kaehler solvmanifolds”, Geom. Dedicata, 29:2 (1989), 227–232 | DOI | MR | Zbl

[4] Atiyah M. F., Hitchin N. J., Singer I. M., “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London. Ser. A, 362 (1978), 425–461 | DOI | MR | Zbl

[5] Chen B. Y., “Some topological obstructions to Bochner–Kaehler metrics and their applications”, J. Differential Geom., 13 (1978), 547–558 | MR | Zbl

[6] Koda T., “Self-dual and anti-self-dual Hermitian surfaces”, Kodai Math. J., 10 (1987), 335–342 | DOI | MR | Zbl

[7] Bourguignon J.-P., “Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein”, Invent. Math., 63 (1981), 263–286 | DOI | MR | Zbl

[8] Derdzinski A., “Self-dual Kähler manifolds and Einstein manifolds of dimensional four”, Compos. Math., 49 (1983), 405–433 | MR | Zbl

[9] Itoh M., “Self-duality of Kähler surfaces”, Compos. Math., 51 (1984), 265–273 | MR | Zbl

[10] Arseneva O. E., “Avtodualnaya geometriya obobschennykh kelerovykh mnogoobrazii”, Matem. sb., 184:8 (1993), 137–148 | Zbl

[11] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhniki. Problemy geometrii, 18, VINITI, M., 1986, 25–72 | MR

[12] Vanhecke L., “Almost Hermitian manifolds with $J$-invariant Riemann curvature tensor”, Rend. Sem. Mat. Univ. Politec. Torino, 34 (1975–1976), 487–498 | MR

[13] Kobayashi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, 2, M., 1980

[14] Vaisman I., “Locally conformal Kähler manifolds with parallel Lee form”, Rend. Mat. (6), 12:2 (1979), 263–284 | MR