@article{SM_1998_189_1_a1,
author = {O. E. Arsen'eva and V. F. Kirichenko},
title = {Self-dual geometry of generalized {Hermitian} surfaces},
journal = {Sbornik. Mathematics},
pages = {19--41},
year = {1998},
volume = {189},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_1_a1/}
}
O. E. Arsen'eva; V. F. Kirichenko. Self-dual geometry of generalized Hermitian surfaces. Sbornik. Mathematics, Tome 189 (1998) no. 1, pp. 19-41. http://geodesic.mathdoc.fr/item/SM_1998_189_1_a1/
[1] Tricerri F., Vaisman I., “On some $2$-dimensional Hermitian manifolds”, Math. Z., 192 (1986), 205–216 | DOI | MR | Zbl
[2] Vaisman I., “Some curvature properties of complex surfaces”, Ann. Math. Pura Appl. (4), 32 (1982), 1–18 | DOI | MR
[3] De Andres L. C., Cordero L. A., Fernandes M., Mencia J. J., “Examples of four-dimensional compact locally conformal Kaehler solvmanifolds”, Geom. Dedicata, 29:2 (1989), 227–232 | DOI | MR | Zbl
[4] Atiyah M. F., Hitchin N. J., Singer I. M., “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London. Ser. A, 362 (1978), 425–461 | DOI | MR | Zbl
[5] Chen B. Y., “Some topological obstructions to Bochner–Kaehler metrics and their applications”, J. Differential Geom., 13 (1978), 547–558 | MR | Zbl
[6] Koda T., “Self-dual and anti-self-dual Hermitian surfaces”, Kodai Math. J., 10 (1987), 335–342 | DOI | MR | Zbl
[7] Bourguignon J.-P., “Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein”, Invent. Math., 63 (1981), 263–286 | DOI | MR | Zbl
[8] Derdzinski A., “Self-dual Kähler manifolds and Einstein manifolds of dimensional four”, Compos. Math., 49 (1983), 405–433 | MR | Zbl
[9] Itoh M., “Self-duality of Kähler surfaces”, Compos. Math., 51 (1984), 265–273 | MR | Zbl
[10] Arseneva O. E., “Avtodualnaya geometriya obobschennykh kelerovykh mnogoobrazii”, Matem. sb., 184:8 (1993), 137–148 | Zbl
[11] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhniki. Problemy geometrii, 18, VINITI, M., 1986, 25–72 | MR
[12] Vanhecke L., “Almost Hermitian manifolds with $J$-invariant Riemann curvature tensor”, Rend. Sem. Mat. Univ. Politec. Torino, 34 (1975–1976), 487–498 | MR
[13] Kobayashi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, 2, M., 1980
[14] Vaisman I., “Locally conformal Kähler manifolds with parallel Lee form”, Rend. Mat. (6), 12:2 (1979), 263–284 | MR