$L_p$-estimates of the~solution of the~Dirichlet problem for second-order elliptic equations
Sbornik. Mathematics, Tome 189 (1998) no. 1, pp. 1-17

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet problem for second-order divergence-form elliptic equations with coefficients continuous in a closed domain is considered. A necessary and sufficient condition on the boundary of a compact domain ensuring the unique $L_p$-solubility of the problem in question and also a corresponding coercive $L_p$-estimate for all $p>1$ are obtained.
@article{SM_1998_189_1_a0,
     author = {Yu. A. Alkhutov},
     title = {$L_p$-estimates of the~solution of {the~Dirichlet}  problem for second-order elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {189},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_1_a0/}
}
TY  - JOUR
AU  - Yu. A. Alkhutov
TI  - $L_p$-estimates of the~solution of the~Dirichlet  problem for second-order elliptic equations
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1
EP  - 17
VL  - 189
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_1_a0/
LA  - en
ID  - SM_1998_189_1_a0
ER  - 
%0 Journal Article
%A Yu. A. Alkhutov
%T $L_p$-estimates of the~solution of the~Dirichlet  problem for second-order elliptic equations
%J Sbornik. Mathematics
%D 1998
%P 1-17
%V 189
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_1_a0/
%G en
%F SM_1998_189_1_a0
Yu. A. Alkhutov. $L_p$-estimates of the~solution of the~Dirichlet  problem for second-order elliptic equations. Sbornik. Mathematics, Tome 189 (1998) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/SM_1998_189_1_a0/