Substantiation of the Darcy law for a porous medium with condition of partial adhesion
Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1871-1888 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of a stationary Stokes's system in a periodically perforated domain with boundary conditions of mixed type, which describes the motion of a viscous incompressible fluid in a porous medium in the presence of friction between the fluid and the walls of the pores. The relation between the leading terms of the asymptotic expansions with respect to $\varepsilon$ for the fluid velocity and the pressure is obtained, where $\varepsilon$ is the parameter characterizing the fineness of the porous structure.
@article{SM_1998_189_12_a8,
     author = {S. E. Pastukhova},
     title = {Substantiation of {the~Darcy} law for a~porous medium with condition of partial adhesion},
     journal = {Sbornik. Mathematics},
     pages = {1871--1888},
     year = {1998},
     volume = {189},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_12_a8/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - Substantiation of the Darcy law for a porous medium with condition of partial adhesion
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1871
EP  - 1888
VL  - 189
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_12_a8/
LA  - en
ID  - SM_1998_189_12_a8
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T Substantiation of the Darcy law for a porous medium with condition of partial adhesion
%J Sbornik. Mathematics
%D 1998
%P 1871-1888
%V 189
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1998_189_12_a8/
%G en
%F SM_1998_189_12_a8
S. E. Pastukhova. Substantiation of the Darcy law for a porous medium with condition of partial adhesion. Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1871-1888. http://geodesic.mathdoc.fr/item/SM_1998_189_12_a8/

[1] Polubarinova-Kochina P. Ya., Teoriya dvizheniya gruntovykh vod, Nauka, M., 1977 | MR

[2] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[3] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[4] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh sred, Izd-vo MGU, M., 1990 | Zbl

[5] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[6] Zhikov V. V., “Ob usrednenii uravnenii Stoksa v perforirovannoi oblasti”, Dokl. RAN, 334:2 (1994), 144–147 | MR | Zbl

[7] Beliaev A. Yu., Kozlov S. M., “Darcy Equation for Random Porous Media”, CPAM, 49:1 (1996), 1–35 | MR

[8] Belyaev A. Yu., Effendiev Ya. R., “Usrednenie sistemy uravnenii Stoksa”, Matem. zametki, 59:4 (1996), 504–520 | MR | Zbl

[9] Slezkin N. A., Dinamika vyazkoi neszhimaemoi zhidkosti, Gostekhizdat, M., 1954

[10] Petrov N. P., “Trenie v mashinakh i vliyanie na nego smazyvayuschei zhidkosti”, Gidrodinamicheskaya teoriya smazki, GTTI, M., 1934, 11–247

[11] Ladyzhenskaya O. A., Matematicheskie voprosy vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970

[12] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[13] Sandrakov G. V., “Osrednenie nestatsionarnoi sistemy Stoksa v perforirovannoi oblasti”, Izv. RAN. Ser. matem., 61:1 (1997), 113–140 | MR | Zbl

[14] Pastukhova S. E., “O kharaktere zatukhaniya peremeschenii v uprugom periodicheski perforirovannom tele s zadannoi deformatsiei vneshnei granitsy pri uprugikh svyazyakh na granitse polostei”, Differents. uravneniya, 32:10 (1996), 1401–1409 | MR | Zbl

[15] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[16] Pastukhova S. E., “Metod kompensirovannoi kompaktnosti Tartara v usrednenii spektra smeshannoi zadachi dlya ellipticheskogo uravneniya v perforirovannoi oblasti s tretim kraevym usloviem”, Matem. sb., 186:5 (1995), 127–144 | MR | Zbl