Linear determining equations for differential constraints
Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1839-1854 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A construction of differential constraints compatible with partial differential equations is considered. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the classical determining equations used in the search for admissible Lie operators. As applications of this approach equations of an ideal incompressible fluid and non-linear heat equations are discussed.
@article{SM_1998_189_12_a6,
     author = {O. V. Kaptsov},
     title = {Linear determining equations for differential constraints},
     journal = {Sbornik. Mathematics},
     pages = {1839--1854},
     year = {1998},
     volume = {189},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_12_a6/}
}
TY  - JOUR
AU  - O. V. Kaptsov
TI  - Linear determining equations for differential constraints
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1839
EP  - 1854
VL  - 189
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_12_a6/
LA  - en
ID  - SM_1998_189_12_a6
ER  - 
%0 Journal Article
%A O. V. Kaptsov
%T Linear determining equations for differential constraints
%J Sbornik. Mathematics
%D 1998
%P 1839-1854
%V 189
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1998_189_12_a6/
%G en
%F SM_1998_189_12_a6
O. V. Kaptsov. Linear determining equations for differential constraints. Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1839-1854. http://geodesic.mathdoc.fr/item/SM_1998_189_12_a6/

[1] Sidorov A. F., Shapeev V. P., Yanenko N. N., Metod differentsialnykh svyazei i ego prilozheniya v gazovoi dinamike, Nauka, Novosibirsk, 1984 | MR

[2] Andreev V. K., Kaptsov O. V., Pukhnachev V. V., Rodionov A. A., Primenenie teoretiko-gruppovykh metodov v gidrodinamike, Nauka, Novosibirsk, 1994 | MR

[3] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[4] Kaptsov O. V., “B-determining equations: applications to nonlinear partial differential equations”, European J. Appl. Math., 6 (1995), 265–286 | DOI | MR | Zbl

[5] Galaktionov V. A., “Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearrities”, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 225–246 | MR | Zbl

[6] Galaktionov V. A., Posashkov S. A., “Tochnye resheniya i invariantnye prostranstva dlya nelineinykh uravnenii gradientnoi diffuzii”, ZhVM i MF, 34:3 (1994), 373–383 | MR | Zbl

[7] Svirschevskii S. R., “Nelineinye differentsialnye operatory pervogo i vtorogo poryadkov, obladayuschie invariantnymi lineinymi prostranstvami maksimalnoi razmernosti”, TMF, 105:2 (1995), 198–207 | MR | Zbl

[8] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[9] Kaptsov O. V., “Determining Equations and Differential Constraints”, J. Nonlinear Math. Phys., 4:1 (1995), 283–291 | DOI | MR | Zbl

[10] Betchelor Dzh., Vvedenie v dinamiku zhidkosti, Mir, M., 1973

[11] Kaptsov O. V., “Statsionarnye vikhrevye struktury v idealnoi zhidkosti”, ZhETF, 98:2 (1992), 532–541

[12] Meirmanov A. M., Pukhnachov V. V., Shmarev S. I., Evolution Equations and Lagrangian Coordinates, Walter de Gruyter, New York, 1997 | MR

[13] Akhatov I. Sh., Gazizov R. K., Ibragimov N. Kh., “Kvazilokalnye simmetrii uravnenii tipa nelineinoi teploprovodnosti”, Dokl. AN SSSR, 295:1 (1987), 75–78 | MR | Zbl