On the Baer ideal in algebras satisfying Capelli identities
Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1809-1818
Voir la notice de l'article provenant de la source Math-Net.Ru
The structure is investigated of the Baer ideal of a finitely generated algebra of arbitrary finite signature over an arbitrary field or over a Noetherian commutative-associative ring satisfying a system of Capelli identities of order $n+1$. It is proved that the length of the Baer chain of ideals in such an algebra is at most $n$. It is proved that the quotient of this algebra modulo the largest nilpotent ideal is representable.
@article{SM_1998_189_12_a4,
author = {K. A. Zubrilin},
title = {On the {Baer} ideal in algebras satisfying {Capelli} identities},
journal = {Sbornik. Mathematics},
pages = {1809--1818},
publisher = {mathdoc},
volume = {189},
number = {12},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_12_a4/}
}
K. A. Zubrilin. On the Baer ideal in algebras satisfying Capelli identities. Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1809-1818. http://geodesic.mathdoc.fr/item/SM_1998_189_12_a4/