On the Baer ideal in algebras satisfying Capelli identities
Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1809-1818

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure is investigated of the Baer ideal of a finitely generated algebra of arbitrary finite signature over an arbitrary field or over a Noetherian commutative-associative ring satisfying a system of Capelli identities of order $n+1$. It is proved that the length of the Baer chain of ideals in such an algebra is at most $n$. It is proved that the quotient of this algebra modulo the largest nilpotent ideal is representable.
@article{SM_1998_189_12_a4,
     author = {K. A. Zubrilin},
     title = {On the {Baer} ideal in algebras satisfying {Capelli} identities},
     journal = {Sbornik. Mathematics},
     pages = {1809--1818},
     publisher = {mathdoc},
     volume = {189},
     number = {12},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_12_a4/}
}
TY  - JOUR
AU  - K. A. Zubrilin
TI  - On the Baer ideal in algebras satisfying Capelli identities
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1809
EP  - 1818
VL  - 189
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_12_a4/
LA  - en
ID  - SM_1998_189_12_a4
ER  - 
%0 Journal Article
%A K. A. Zubrilin
%T On the Baer ideal in algebras satisfying Capelli identities
%J Sbornik. Mathematics
%D 1998
%P 1809-1818
%V 189
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_12_a4/
%G en
%F SM_1998_189_12_a4
K. A. Zubrilin. On the Baer ideal in algebras satisfying Capelli identities. Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1809-1818. http://geodesic.mathdoc.fr/item/SM_1998_189_12_a4/