Renewal theorems for a system of integral equations
Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1795-1808 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The system of renewal integral equations $$ \varphi _i(x)=g_i(x)+\sum _{j=1}^m\int _0^xu_{ij}(x-t)\varphi _j(t)\,dt, \qquad i=1,\dots ,m, $$ is considered, where the matrix-valued function $u=(u_{ij})$ satisfies the condition of conservativeness $0\leqslant u_{ij}\in L_1^+\equiv L_1(0;\infty)$, and the matrix $A=\int _0^\infty u(x)\,dx$ is irreducible and of spectral radius. The existence of a limit at $+\infty$ of the solution $\varphi =(\varphi _1,\dots ,\varphi _m)^T$ is established in the case when the vector-valued function $g=(g_1,\dots ,g_m)^T\in L_1^m$ is bounded and $g(+\infty )=0$. This limit is evaluated. The structure of $\phi$ for $g\in L_1^m$ is determined; namely, $\varphi (x)=\mu +\rho _0(x)+\psi(x)$, where $\rho _0\in C_0^m$ and $\psi \in L_1^m$. A similar formula for the resolvent matrix-valued function is obtained.
@article{SM_1998_189_12_a3,
     author = {N. B. Engibaryan},
     title = {Renewal theorems for a~system of integral equations},
     journal = {Sbornik. Mathematics},
     pages = {1795--1808},
     year = {1998},
     volume = {189},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_12_a3/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - Renewal theorems for a system of integral equations
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1795
EP  - 1808
VL  - 189
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_12_a3/
LA  - en
ID  - SM_1998_189_12_a3
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T Renewal theorems for a system of integral equations
%J Sbornik. Mathematics
%D 1998
%P 1795-1808
%V 189
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1998_189_12_a3/
%G en
%F SM_1998_189_12_a3
N. B. Engibaryan. Renewal theorems for a system of integral equations. Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1795-1808. http://geodesic.mathdoc.fr/item/SM_1998_189_12_a3/

[1] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984 | Zbl

[2] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR | Zbl

[3] Tsalyuk Z. B., “Ob asimptotike reshenii uravneniya vosstanovleniya”, Differents. uravneniya, 6:6 (1970), 1112–1114 | MR | Zbl

[4] Sevastyanov B. A., “Teoriya vosstanovleniya”, Itogi nauki i tekhniki. Teoriya veroyatnostei, matem. statistika, teor. kibernetika, 11, VINITI, M., 1974, 98–128

[5] Korolyuk V. S., Brodi S. M., Turbin A. F., “Polumarkovskie protsessy i ikh primenenie”, Itogi nauki i tekhniki. Teoriya veroyatnostei, matem. statistika, teor. kibernetika, 11, VINITI, M., 1974, 47–97

[6] Sevastyanov B. A., Chistyakov V. P., “Uravnenie mnogomernogo vosstanovleniya i momenty vetvyaschikhsya protsessov”, Teoriya veroyatnostei i ee prim., 16:2 (1971), 201–217 | MR | Zbl

[7] Tsalyuk Z. B., “Integralnye uravneniya Volterra”, Itogi nauki i tekhniki. matem. analiz, 15, VINITI, M., 1977, 131–198

[8] Engibaryan N. B., “Faktorizatsiya matrits-funktsii i nelineinye integralnye uravneniya”, Izv. AN Arm.SSR. Ser. matem., 15:3 (1980), 233–244 | MR | Zbl

[9] Engibaryan N. B., Arabadzhyan L. G., “Sistemy integralnykh uravnenii Vinera–Khopfa i nelineinye uravneniya faktorizatsii”, Matem. sb., 124:2 (1984), 189–216 | MR | Zbl

[10] Arabadzhyan L. G., Engibaryan N. B., “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhniki. Matem. analiz, 22, VINITI, M., 1984, 175–244 | MR

[11] Arabadzhyan L. G., “O sistemakh integralnykh uravnenii vosstanovleniya”, Differents. uravneniya, 20:6 (1984), 1050–1055 | MR | Zbl

[12] Lankaster P., Teoriya matrits, Nauka, M., 1978 | MR

[13] Gevorkyan G. G., Engibaryan N. B., “O suschestvovanii predela v beskonechnosti resheniya uravneniya vosstanovleniya”, Izv. NAN RA. Ser. matem., 32:1 (1997), 5–20 | MR | Zbl

[14] Engibaryan N. B., “O nelineinykh uravneniyakh faktorizatsii operatorov”, Primenenie metodov teorii funktsii i funktsionalnogo analiza k zadacham matematicheskoi fiziki, Izd-vo ErGU, Erevan, 1982, 123–128

[15] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl