Renewal theorems for a~system of integral equations
Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1795-1808

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of renewal integral equations $$ \varphi _i(x)=g_i(x)+\sum _{j=1}^m\int _0^xu_{ij}(x-t)\varphi _j(t)\,dt, \qquad i=1,\dots ,m, $$ is considered, where the matrix-valued function $u=(u_{ij})$ satisfies the condition of conservativeness $0\leqslant u_{ij}\in L_1^+\equiv L_1(0;\infty)$, and the matrix $A=\int _0^\infty u(x)\,dx$ is irreducible and of spectral radius. The existence of a limit at $+\infty$ of the solution $\varphi =(\varphi _1,\dots ,\varphi _m)^T$ is established in the case when the vector-valued function $g=(g_1,\dots ,g_m)^T\in L_1^m$ is bounded and $g(+\infty )=0$. This limit is evaluated. The structure of $\phi$ for $g\in L_1^m$ is determined; namely, $\varphi (x)=\mu +\rho _0(x)+\psi(x)$, where $\rho _0\in C_0^m$ and $\psi \in L_1^m$. A similar formula for the resolvent matrix-valued function is obtained.
@article{SM_1998_189_12_a3,
     author = {N. B. Engibaryan},
     title = {Renewal theorems for a~system of integral equations},
     journal = {Sbornik. Mathematics},
     pages = {1795--1808},
     publisher = {mathdoc},
     volume = {189},
     number = {12},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_12_a3/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - Renewal theorems for a~system of integral equations
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1795
EP  - 1808
VL  - 189
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_12_a3/
LA  - en
ID  - SM_1998_189_12_a3
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T Renewal theorems for a~system of integral equations
%J Sbornik. Mathematics
%D 1998
%P 1795-1808
%V 189
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_12_a3/
%G en
%F SM_1998_189_12_a3
N. B. Engibaryan. Renewal theorems for a~system of integral equations. Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1795-1808. http://geodesic.mathdoc.fr/item/SM_1998_189_12_a3/