Renewal theorems for a~system of integral equations
Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1795-1808
Voir la notice de l'article provenant de la source Math-Net.Ru
The system of renewal integral equations
$$
\varphi _i(x)=g_i(x)+\sum _{j=1}^m\int _0^xu_{ij}(x-t)\varphi _j(t)\,dt, \qquad
i=1,\dots ,m,
$$
is considered, where the matrix-valued function $u=(u_{ij})$ satisfies the condition of conservativeness $0\leqslant u_{ij}\in L_1^+\equiv L_1(0;\infty)$, and the matrix $A=\int _0^\infty u(x)\,dx$ is irreducible and of spectral radius.
The existence of a limit at $+\infty$ of the solution $\varphi =(\varphi _1,\dots ,\varphi _m)^T$ is established in the case when the vector-valued function $g=(g_1,\dots ,g_m)^T\in L_1^m$ is bounded and $g(+\infty )=0$. This limit is evaluated. The structure of $\phi$ for $g\in L_1^m$ is determined; namely, $\varphi (x)=\mu +\rho _0(x)+\psi(x)$, where $\rho _0\in C_0^m$ and $\psi \in L_1^m$. A similar formula for the resolvent matrix-valued function is obtained.
@article{SM_1998_189_12_a3,
author = {N. B. Engibaryan},
title = {Renewal theorems for a~system of integral equations},
journal = {Sbornik. Mathematics},
pages = {1795--1808},
publisher = {mathdoc},
volume = {189},
number = {12},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_12_a3/}
}
N. B. Engibaryan. Renewal theorems for a~system of integral equations. Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1795-1808. http://geodesic.mathdoc.fr/item/SM_1998_189_12_a3/