Arithmetic theory of brick tilings
Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1765-1794 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new, “arithmetic”, approach to the algebraic theory of brick tilings is developed. This approach enables one to construct a simple classification of brick tilings in ${\mathbb Z}^d$ and to find new proofs of several classical results on brick packing and tilings in ${\mathbb Z}^d$. In addition, possible generalizations of results on integer brick packing to the Euclidean plane $\mathbb R^2$ are investigated.
@article{SM_1998_189_12_a2,
     author = {A. V. Egorov and A. A. Prikhod'ko},
     title = {Arithmetic theory of brick tilings},
     journal = {Sbornik. Mathematics},
     pages = {1765--1794},
     year = {1998},
     volume = {189},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_12_a2/}
}
TY  - JOUR
AU  - A. V. Egorov
AU  - A. A. Prikhod'ko
TI  - Arithmetic theory of brick tilings
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1765
EP  - 1794
VL  - 189
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_12_a2/
LA  - en
ID  - SM_1998_189_12_a2
ER  - 
%0 Journal Article
%A A. V. Egorov
%A A. A. Prikhod'ko
%T Arithmetic theory of brick tilings
%J Sbornik. Mathematics
%D 1998
%P 1765-1794
%V 189
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1998_189_12_a2/
%G en
%F SM_1998_189_12_a2
A. V. Egorov; A. A. Prikhod'ko. Arithmetic theory of brick tilings. Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1765-1794. http://geodesic.mathdoc.fr/item/SM_1998_189_12_a2/

[1] Gardner M., Puteshestvie vo vremeni, Mir, M., 1990 | MR

[2] de Bruijn N. G., “Filling boxes with bricks”, Amer. Math. Monthly, 76 (1969), 37–40 | DOI | MR | Zbl

[3] Brualdi R. A., Foregger T. H., “Packing boxes with harmonic bricks”, J. Combin. Theory. Ser. B, 17 (1974), 81–114 | DOI | MR | Zbl

[4] de Bruijn N. G., Klarner D. A., “A finite basis theorem for packing boxes with bricks”, Philips Research Rep., 30 (1975), 337–343 | Zbl

[5] Katona G., Szász D., “Matching problems”, J. Combin. Theory. Ser. B, 10 (1971), 60–92 | DOI | MR | Zbl

[6] Klarner D. A., “Brick packing puzzles”, J. Recreational Math., 6 (1973), 112–117 | Zbl

[7] Klarner D. A., Göbel F., “Packing boxes with congruent figures”, Indag. Math. (N.S.), 31 (1969), 465–472 | MR

[8] Barnes F. W., “Algebraic theory of brick packings, I”, Discrete Math., 42:1 (1982), 7–27 | DOI | MR

[9] Barnes F. W., “Algebraic theory of brick packings, II”, Discrete Math., 42:2 (1982), 129–144 | DOI | MR | Zbl

[10] Pokrovsky V. G., “About dissection of an $n$-dimensional cube into congruent parallelepipeds”, Math. Notes, 30:6 (1981), 881–887 | MR

[11] Pokrovsky V. G., “Linear relations in dissection into $n$-dimensional parallelepipeds”, Math. Notes, 37:6 (1985), 901–907 | MR

[12] King J. L., Brick tiling and monotone boolean functions, Preprint, Univ. of Florida, 1996

[13] Prikhod'ko A. A., “Special representations of $\mathbb Z^n$-actions”, J. Dynam. Control Systems, 2 (1996), 239–253 | DOI | MR | Zbl

[14] Khalmosh P. R., Lektsii po ergodicheskoi teorii, IL, M., 1969

[15] Alpern S., “Return times and conjugations of antiperiodic automorphism”, Ergodic Theory Dynam. System, 1:2 (1981), 135–143 | MR | Zbl

[16] Rudolph D., “A two-valued step-coding for ergodic flows”, Math. Z., 150 (1976), 201–220 | DOI | MR | Zbl

[17] Rudolph D., “Markovtilings of $\mathbb R^n$ and representations of $\mathbb R^n$-actions”, Contemp. Math., 94 (1987), 271–290 | MR

[18] Dragalin A. G., Matematicheskii intuitsionizm: teoriya dokazatelstv, Nauka, M., 1979 | MR | Zbl