Arithmetic theory of brick tilings
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1765-1794
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A new, “arithmetic”, approach to the algebraic theory of brick tilings is  developed. This approach enables one to construct a simple classification of brick tilings in ${\mathbb Z}^d$ and to find new proofs of several classical results on brick packing and tilings in ${\mathbb Z}^d$. In addition, possible generalizations of results on integer brick packing to the Euclidean plane $\mathbb R^2$ are investigated.
			
            
            
            
          
        
      @article{SM_1998_189_12_a2,
     author = {A. V. Egorov and A. A. Prikhod'ko},
     title = {Arithmetic theory of brick tilings},
     journal = {Sbornik. Mathematics},
     pages = {1765--1794},
     publisher = {mathdoc},
     volume = {189},
     number = {12},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_12_a2/}
}
                      
                      
                    A. V. Egorov; A. A. Prikhod'ko. Arithmetic theory of brick tilings. Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1765-1794. http://geodesic.mathdoc.fr/item/SM_1998_189_12_a2/
