Poincaré's theorem and its applications to the convergence of continued fractions
Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1749-1764 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A refined version of a classical theorem of Poincaré on difference equations with coefficients having limits is established. Applications include several results that are similar to well-known theorems of Van Vleck, Thron–Waadeland, and Perron, but are proved under considerably weaker assumptions.
@article{SM_1998_189_12_a1,
     author = {V. I. Buslaev},
     title = {Poincar\'e's theorem and its applications to the~convergence of continued fractions},
     journal = {Sbornik. Mathematics},
     pages = {1749--1764},
     year = {1998},
     volume = {189},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_12_a1/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Poincaré's theorem and its applications to the convergence of continued fractions
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1749
EP  - 1764
VL  - 189
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_12_a1/
LA  - en
ID  - SM_1998_189_12_a1
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Poincaré's theorem and its applications to the convergence of continued fractions
%J Sbornik. Mathematics
%D 1998
%P 1749-1764
%V 189
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1998_189_12_a1/
%G en
%F SM_1998_189_12_a1
V. I. Buslaev. Poincaré's theorem and its applications to the convergence of continued fractions. Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1749-1764. http://geodesic.mathdoc.fr/item/SM_1998_189_12_a1/

[1] Poincaré H., “Sur les équations linéaires aux différentielles et aux différences finies”, Amer. J. Math., 7 (1885), 203–258 | DOI | MR

[2] Perron O., “Ob odnoi teoreme A. Puankare”, J. Reine Angew. Math., 136 (1909), 17–37 ; “О линейном разностном уравнении А. Пуанкаре”, J. Reine Angew. Math., 137 (1910), 6–64 | Zbl

[3] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967 | MR

[4] Freiman G. A., “O teoremakh Puankare i Perrona”, UMN, 12:3 (1957), 241–246 | MR | Zbl

[5] Mate A., Nevai P., “A generalization of Poincaré's theorem for recurrence equations”, J. Approx. Theory, 63 (1990), 92–97 | DOI | MR | Zbl

[6] Evgrafov M. A., “Novoe dokazatelstvo teoremy Perrona”, Izv. AN SSSR. Ser. matem., 17 (1953), 77–82 | MR | Zbl

[7] Pringsheim A., “Über die Konvergenz unendlicher Kettenbrüche”, Bayer. Akad. Wiss. Math.-Natur. Kl., 28 (1899), 295–324

[8] Van Vleck E. V., “On the convergence of algebraic continued fractions whose coefficients have limiting values”, Trans. Amer. Soc., 5 (1904), 253–262 | DOI | MR | Zbl

[9] Thron W. J., Waadeland H., “Truncation error bounds for limit periodic continued fractions”, Math. Comp., 40:162 (1983), 589–597 | DOI | MR | Zbl

[10] Thron W. J., Waadeland H., “Accelerating convergence of limit periodic continued fractions $K(a_n/1)$”, Numer. Math., 34 (1980), 155–170 | DOI | MR | Zbl

[11] Perron O., Die Lehre von den Kettenbrüchen, V. II, Teubner, Stuttgart, 1957 | MR | Zbl