Surface integrals in Frechet spaces
Sbornik. Mathematics, Tome 189 (1998) no. 11, pp. 1719-1737

Voir la notice de l'article provenant de la source Math-Net.Ru

A theory of integration over hypersurfaces in separable Frechet spaces is developed. The corresponding definitions are given and the main formulae – of iterated integration, of integration by parts, Gauss's and Green's formulae – are proved.
@article{SM_1998_189_11_a6,
     author = {A. V. Uglanov},
     title = {Surface integrals in {Frechet} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1719--1737},
     publisher = {mathdoc},
     volume = {189},
     number = {11},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_11_a6/}
}
TY  - JOUR
AU  - A. V. Uglanov
TI  - Surface integrals in Frechet spaces
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1719
EP  - 1737
VL  - 189
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_11_a6/
LA  - en
ID  - SM_1998_189_11_a6
ER  - 
%0 Journal Article
%A A. V. Uglanov
%T Surface integrals in Frechet spaces
%J Sbornik. Mathematics
%D 1998
%P 1719-1737
%V 189
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_11_a6/
%G en
%F SM_1998_189_11_a6
A. V. Uglanov. Surface integrals in Frechet spaces. Sbornik. Mathematics, Tome 189 (1998) no. 11, pp. 1719-1737. http://geodesic.mathdoc.fr/item/SM_1998_189_11_a6/