On Hilbert series and the homology of PI-algebras
Sbornik. Mathematics, Tome 189 (1998) no. 11, pp. 1685-1700 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main goal of this paper is to generalize the criterion for complete intersections well known in commutative algebra to the case of an arbitrary variety of PI-(super)algebras. As a consequence, formulae are obtained for computing the Hilbert series of the even and odd parts of relatively free superalgebras and free special Jordan superalgebras.
@article{SM_1998_189_11_a4,
     author = {D. I. Piontkovskii},
     title = {On {Hilbert} series and the homology of {PI-algebras}},
     journal = {Sbornik. Mathematics},
     pages = {1685--1700},
     year = {1998},
     volume = {189},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_11_a4/}
}
TY  - JOUR
AU  - D. I. Piontkovskii
TI  - On Hilbert series and the homology of PI-algebras
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1685
EP  - 1700
VL  - 189
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_11_a4/
LA  - en
ID  - SM_1998_189_11_a4
ER  - 
%0 Journal Article
%A D. I. Piontkovskii
%T On Hilbert series and the homology of PI-algebras
%J Sbornik. Mathematics
%D 1998
%P 1685-1700
%V 189
%N 11
%U http://geodesic.mathdoc.fr/item/SM_1998_189_11_a4/
%G en
%F SM_1998_189_11_a4
D. I. Piontkovskii. On Hilbert series and the homology of PI-algebras. Sbornik. Mathematics, Tome 189 (1998) no. 11, pp. 1685-1700. http://geodesic.mathdoc.fr/item/SM_1998_189_11_a4/

[1] Burbaki N., Gomologicheskaya algebra, Nauka, Novosibirsk, 1987 | MR

[2] Jósefiak T., “Tate resolutions for commutative graded algebras over a local ring”, Fund. Math., 74 (1972), 209–231 | MR

[3] Golod E. S., Shafarevich I. R., “O bashne polei klassov”, Izv. AN SSSR. Ser. matem., 28:2 (1964), 261–272 | MR | Zbl

[4] Anick D., “Non-commutative graded algebras and their Hilbert series”, J. Algebra, 78 (1982), 120–140 | DOI | MR

[5] Anick D., “Inert sets and the Lie algebra associated to a group”, J. Algebra, 111 (1987), 154–165 | DOI | MR | Zbl

[6] Golod E. S., “Nekommutativnye polnye peresecheniya i gomologii kompleksa Shafarevicha”, UMN, 52:4 (1997), 201–202 | MR | Zbl

[7] Halperin S., Lemaire J.-M., “Suites inertes dans les algèbres de Lie graduées”, Math. Scand., 61:1 (1987), 39–67 | MR | Zbl

[8] Boyarkin A. A., Deformatsii i kogomologii v mnogoobraziyakh algebr, Dis. $\dots$ kand. fiz.-matem. nauk, M., 1977 | Zbl

[9] Kemer A. R., “Mnogoobraziya i $\mathbb Z_2$-graduirovannye algebry”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 1042–1059 | MR

[10] Boyarkin A. A., “Rasshireniya PI-algebr”, Matem. zametki, 40:6 (1986), 705–712 | MR | Zbl

[11] Kuzmin E. N., Shestakov I. P., “Neassotsiativnye struktury”, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napr., 57, VINITI, M., 1989, 179–266 | MR

[12] Koszul J. L., “Sur un type d'algèbres différentielles en rapport avec la transgression”, Colloque de topologie (Brussels), 1950, 73–81 | MR

[13] Kemer A. R., “Zamechanie o standartnom tozhdestve”, Matem. zametki, 23:5 (1978), 753–757 | MR | Zbl

[14] Stanley R. P., “Hilbert function of graded algebras”, Adv. Math., 28 (1978), 57–83 | DOI | MR | Zbl

[15] Maklein S., Gomologiya, Mir, M., 1966

[16] Belov A. Ya., “O ratsionalnosti ryadov Gilberta otnositelno svobodnykh algebr”, UMN, 52:2 (1997), 153–154 | MR | Zbl