@article{SM_1998_189_11_a3,
author = {O. V. Matveev},
title = {Interpolation by $D^m$-splines and bases in {Sobolev} spaces},
journal = {Sbornik. Mathematics},
pages = {1657--1684},
year = {1998},
volume = {189},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_11_a3/}
}
O. V. Matveev. Interpolation by $D^m$-splines and bases in Sobolev spaces. Sbornik. Mathematics, Tome 189 (1998) no. 11, pp. 1657-1684. http://geodesic.mathdoc.fr/item/SM_1998_189_11_a3/
[1] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR
[2] Atteia M., “Existence et détermination des fonctions “spline” à plusieurs variables”, C. R. Acad. Sci. Paris. Sér. A, 262:10 (1966), 575–578 | MR | Zbl
[3] Matveev O. V., “Splain-interpolyatsiya funktsii neskolkikh peremennykh i bazisy v prostranstvakh Soboleva”, Tr. MIAN, 198, Nauka, M., 1992, 125–152 | MR | Zbl
[4] Nikolskii S. M., “Soboleva prostranstvo”, Matem. entsiklopediya, T. 5, Sov. entsiklopediya, M., 1985, 56–58
[5] Matveev O. V., “Approksimativnye svoistva interpolyatsionnykh $D^m$-splainov”, Dokl. AN SSSR, 321:1 (1991), 14–18 | MR | Zbl
[6] Matveev O. V., Interpolirovanie $D^m$-splainami na khaoticheskikh setkakh, Dis. $\dots$ dokt. fiz.-matem. nauk, In-t matem. i mekh. UrO RAN, Ekaterinburg, 1994
[7] Walsh J. L., Ahlberg J. H., Nilson E. N., “Best approximation properties of the spline fit”, J. Math. Mech., 11:2 (1962), 225–234 | MR | Zbl
[8] Ahlberg J. H., Nilson E. N., “Convergence properties of the spline fit”, J. Soc. Ind. Appl. Math., 11:1 (1963), 95–104 | DOI | MR | Zbl
[9] Ahlberg J. H., Nilson E. N., Walsh J. L., “Best approximation and convergence properties of higher-order spline approximations”, J. Math. Mech., 14:2 (1965), 231–243 | MR | Zbl
[10] Ahlberg J. H., Nilson E. N., Walsh J. L., “Convergence properties of cubic splines”, Notices Amer. Math. Soc., 13:1 (1966), 140
[11] Ahlberg J. H., Nilson E. N., “Polynomial splines on the real line”, J. Approx. Theory, 3:4 (1970), 398–409 | DOI | MR | Zbl
[12] Sharma A., Meir A., “Convergence of spline-functions”, Notices Amer. Math. Soc., 11:7 (1964), 768
[13] Sharma A., Meir A., “Degree of approximation of spline interpolation”, J. Math. Mech., 15:5 (1966), 759–767 | MR | Zbl
[14] Nord S., “Approximation properties of the spline fit”, BIT, 7:2 (1967), 132–144 | DOI | MR | Zbl
[15] De Boor C., “Odd-degree spline interpolation at a biinfinite knote sequence”, Lecture Notes in Math., 556, 1976, 30–53 | MR | Zbl
[16] Subbotin Yu. N., “Priblizhenie funktsii klassa $W^kH^p_\omega$ splainami poryadka $m$”, Dokl. AN SSSR, 195:5 (1970), 1039–1041 | MR | Zbl
[17] Subbotin Yu. N., “Priblizhenie “splain”-funktsiyami i otsenki poperechnikov”, Tr. MIAN, 109, Nauka, M., 1971, 35–60 | MR | Zbl
[18] Subbotin Yu. N., “Splain-approksimatsiya”, Trudy Saratov. zimnei shkoly, Ch. 1 (1982), Izd-vo Saratov. un-ta, Saratov, 1983, 81–90 | MR
[19] Lucas T. R., “Error bounds for interpolating cubic splines under various end conditions”, SIAM J. Numer. Anal., 11:3 (1974), 569–584 | DOI | MR | Zbl
[20] Marsden M., “Cubic spline interpolation of continuous functions”, J. Approx. Theory, 10:2 (1974), 103–111 | DOI | MR | Zbl
[21] Zmatrakov N. L., “Skhodimost interpolyatsionnogo protsessa dlya parabolicheskikh i kubicheskikh splainov”, Tr. MIAN, 138, Nauka, M., 1975, 71–93 | MR | Zbl
[22] Shadrin A. Yu., “O priblizhenii funktsii interpolyatsionnymi splainami, zadannymi na neravnomernykh setkakh”, Matem. sb., 181:9 (1990), 1236–1255
[23] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR | Zbl
[24] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl
[25] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[26] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR
[27] Farwig R., “Rate of convergence of Shepard's global interpolation formula”, Math. Comp., 46:174 (1986), 577–590 | DOI | MR | Zbl
[28] Duchon J., “Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces”, RAIRO Modél. Math. Anal. Numér., 10:12 (1976), 5–12 | MR
[29] Duchon J., “Sur l'erreur d'interpolation des fonctions de plusieurs variables par les $D^m$-splines”, RAIRO Modél. Math. Anal. Numér., 12:4 (1978), 325–334 | MR | Zbl
[30] Bezhaev A. Yu., $D^m$-splainy v zadachakh priblizheniya funktsii na khaoticheskikh setkakh, Avtoref. dis. $\dots$ kand. fiz.-matem. nauk, VTs SO AN SSSR, Novosibirsk, 1985
[31] Madych W. R., Nelson S. A., “Polyharmonic cardinal splines”, J. Approx. Theory, 60:2 (1990), 141–156 | DOI | MR | Zbl
[32] Ciesielski Z., Figiel T., “Spline bases in classical function spaces on compact $C^\infty$ manifolds. I; II”, Studia Math., 76:1 (1983), 1–58 | MR | Zbl
[33] Subbotin Yu. N., “Priblizhenie splainami i gladkie bazisy v $C[0,2\pi]$”, Matem. zametki, 12:1 (1972), 43–51 | MR | Zbl
[34] Chiselskii Z., “Bazisy i $K$-funktsionaly dlya prostranstv Soboleva nad kompaktnymi mnogoobraziyami klassa $C^\infty$”, Tr. MIAN, 164, Nauka, M., 1983, 197–202 | MR | Zbl
[35] Franke R., “Scattered data interpolation: tests of some methods”, Math. Comp., 38:157 (1982), 181–200 | DOI | MR | Zbl
[36] Vasilenko V. A., Splain-funktsii: teoriya, algoritmy, programmy, Nauka, Novosibirsk, 1983 | MR
[37] Ignatov M. I., Pevnyi A. B., Splain-approksimatsiya plavnykh poverkhnostei, Preprint No 149. Ser. Nauch. dokl. Komi fil. AN SSSR, Komi filial AN SSSR, Syktyvkar, 1986
[38] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl
[39] Brudnyi Yu. A., “Mnogomernyi analog odnoi teoremy Uitni”, Matem. sb., 82:2 (1970), 175–191 | MR | Zbl
[40] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, Nauka, M., 1962
[41] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR
[42] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR
[43] Zavyalov Yu. S., Imamov A., “O variatsionnykh zadachakh teorii splainov”, Matem. analiz i smezhnye voprosy matematiki, Nauka, Novosibirsk, 1978, 27–36 | MR
[44] Privalov I., Pchelin B., “K obschei teorii poligarmonicheskikh funktsii”, Matem. sb., 2:4 (1937), 745–758 | Zbl