Interpolation by $D^m$-splines and bases in Sobolev spaces
Sbornik. Mathematics, Tome 189 (1998) no. 11, pp. 1657-1684

Voir la notice de l'article provenant de la source Math-Net.Ru

Approximation of functions of several variables by $D^m$-interpolating splines on irregular grids is considered. Sharp in order estimates (of various kinds) of the error of the approximation of functions $f\in W^k_p(\Omega )$ in the seminorms ${\|D^l\cdot \|_{L_q}}$ are obtained in terms of the moduli of smoothness in $L_p$ of the $k$-th derivatives of $f$. As a consequence, for a bounded domain $\Omega$ in $\mathbb R^n$ with minimally smooth boundary and for each $t\in \mathbb N$ a basis in the Sobolev space $W^k_p(\Omega )$ is constructed such that the error of the approximation of $f\in W^k_p(\Omega )$ by the $N$-th partial sum of the expansion of $f$ with respect to this basis has an estimate in terms of its $t$-th modulus of smoothness $\omega _t(D^kf,N^{-1/n})_{L_p(\Omega )}$.
@article{SM_1998_189_11_a3,
     author = {O. V. Matveev},
     title = {Interpolation by $D^m$-splines and bases in {Sobolev} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1657--1684},
     publisher = {mathdoc},
     volume = {189},
     number = {11},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_11_a3/}
}
TY  - JOUR
AU  - O. V. Matveev
TI  - Interpolation by $D^m$-splines and bases in Sobolev spaces
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1657
EP  - 1684
VL  - 189
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_11_a3/
LA  - en
ID  - SM_1998_189_11_a3
ER  - 
%0 Journal Article
%A O. V. Matveev
%T Interpolation by $D^m$-splines and bases in Sobolev spaces
%J Sbornik. Mathematics
%D 1998
%P 1657-1684
%V 189
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_11_a3/
%G en
%F SM_1998_189_11_a3
O. V. Matveev. Interpolation by $D^m$-splines and bases in Sobolev spaces. Sbornik. Mathematics, Tome 189 (1998) no. 11, pp. 1657-1684. http://geodesic.mathdoc.fr/item/SM_1998_189_11_a3/