Some classification problems in four-dimensional geometry: distributions, almost complex structures, and generalized Monge--Ampere equations
Sbornik. Mathematics, Tome 189 (1998) no. 11, pp. 1643-1656

Voir la notice de l'article provenant de la source Math-Net.Ru

Three related classification problems on four-manifolds are discussed. First, regular distributions are considered and described locally. After that a classification of almost complex structures of general position in terms of distributions is proposed. Finally, non-degenerate generalized Monge–Ampere equations are classified in terms of $\{e\}$-structures. Symplectic Lie algebras are also considered in an appendix.
@article{SM_1998_189_11_a2,
     author = {B. S. Kruglikov},
     title = {Some classification problems in four-dimensional  geometry: distributions, almost complex structures, and generalized {Monge--Ampere} equations},
     journal = {Sbornik. Mathematics},
     pages = {1643--1656},
     publisher = {mathdoc},
     volume = {189},
     number = {11},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_11_a2/}
}
TY  - JOUR
AU  - B. S. Kruglikov
TI  - Some classification problems in four-dimensional  geometry: distributions, almost complex structures, and generalized Monge--Ampere equations
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1643
EP  - 1656
VL  - 189
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_11_a2/
LA  - en
ID  - SM_1998_189_11_a2
ER  - 
%0 Journal Article
%A B. S. Kruglikov
%T Some classification problems in four-dimensional  geometry: distributions, almost complex structures, and generalized Monge--Ampere equations
%J Sbornik. Mathematics
%D 1998
%P 1643-1656
%V 189
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_11_a2/
%G en
%F SM_1998_189_11_a2
B. S. Kruglikov. Some classification problems in four-dimensional  geometry: distributions, almost complex structures, and generalized Monge--Ampere equations. Sbornik. Mathematics, Tome 189 (1998) no. 11, pp. 1643-1656. http://geodesic.mathdoc.fr/item/SM_1998_189_11_a2/