Asymptotic behaviour of bounded controls for a singular elliptic problem in a domain with a small cavity
Sbornik. Mathematics, Tome 189 (1998) no. 11, pp. 1611-1642 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of optimal control of solutions of an elliptic equation in a domain with a small cavity is discussed. Uniform asymptotic formulae for the solutions are obtained up to an arbitrary degree of the small parameter by the method of matching asymptotic expansions. Other aspects of the same problem have been considered by Kapustyan.
@article{SM_1998_189_11_a1,
     author = {A. R. Danilin},
     title = {Asymptotic behaviour of bounded controls for a~singular elliptic problem in a~domain with a~small cavity},
     journal = {Sbornik. Mathematics},
     pages = {1611--1642},
     year = {1998},
     volume = {189},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_11_a1/}
}
TY  - JOUR
AU  - A. R. Danilin
TI  - Asymptotic behaviour of bounded controls for a singular elliptic problem in a domain with a small cavity
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1611
EP  - 1642
VL  - 189
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_11_a1/
LA  - en
ID  - SM_1998_189_11_a1
ER  - 
%0 Journal Article
%A A. R. Danilin
%T Asymptotic behaviour of bounded controls for a singular elliptic problem in a domain with a small cavity
%J Sbornik. Mathematics
%D 1998
%P 1611-1642
%V 189
%N 11
%U http://geodesic.mathdoc.fr/item/SM_1998_189_11_a1/
%G en
%F SM_1998_189_11_a1
A. R. Danilin. Asymptotic behaviour of bounded controls for a singular elliptic problem in a domain with a small cavity. Sbornik. Mathematics, Tome 189 (1998) no. 11, pp. 1611-1642. http://geodesic.mathdoc.fr/item/SM_1998_189_11_a1/

[1] Ilin A. M., Soglasovanie asimtoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[2] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR

[3] Kapustyan V. E., “Asimptotika ogranichennykh upravlenii v optimalnykh ellipticheskikh zadachakh”, Dokl. AN Ukrainy. Ser. matematika, estestvoznanie, tekhnicheskie nauki, 1992, no. 2, 70–74 | MR

[4] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s tonkoi schelyu. 2: Oblast s malym otverstiem”, Matem. sb., 103:2 (1977), 265–284 | MR | Zbl

[5] Ilin A. M., “Issledovanie asimptotiki resheniya ellipticheskoi kraevoi zadachi s malym otverstiem”, Trudy sem. im. I. G. Petrovskogo, 6, Izd-vo MGU, M., 1981, 57–82 | MR

[6] Mazya V. G., Nazarov S. A., Plamenevskii B. A., Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnykh vozmuscheniyakh oblasti, Izd-vo TGU, Tbilisi, 1981 | MR | Zbl

[7] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblasti s malymi otverstiyami”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 347–371 | MR

[8] Argatov I. I., Nazarov S. A., “Asimptoticheskoe reshenie zadachi Sinorini s malymi uchastkami svobodnoi granitsy”, Sib. matem. zhurn., 35:2 (1994), 258–277 | MR | Zbl

[9] Nazarov S. A., “Asimptoticheskie resheniya zadachi s malymi prepyatstviyami”, Differents. uravneniya, 31:6 (1995), 1031–1041 | MR | Zbl

[10] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950

[11] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl