Extremal properties of discrete measures, the universal sequence, and the duality principle
Sbornik. Mathematics, Tome 189 (1998) no. 11, pp. 1587-1610 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new proof of results on the universal sequence and extremal properties of discrete measures is given on the basis of the duality principle. These results were earlier obtained by the same authors in the solution of certain maximum problems arising in mathematical geophysics. The transition to the dual minimum problems reveals the geometric meaning of these results and opens the way to their generalization.
@article{SM_1998_189_11_a0,
     author = {M. L. Gerver and E. A. Kudryavtseva},
     title = {Extremal properties of discrete measures, the~universal sequence, and the~duality principle},
     journal = {Sbornik. Mathematics},
     pages = {1587--1610},
     year = {1998},
     volume = {189},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_11_a0/}
}
TY  - JOUR
AU  - M. L. Gerver
AU  - E. A. Kudryavtseva
TI  - Extremal properties of discrete measures, the universal sequence, and the duality principle
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1587
EP  - 1610
VL  - 189
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_11_a0/
LA  - en
ID  - SM_1998_189_11_a0
ER  - 
%0 Journal Article
%A M. L. Gerver
%A E. A. Kudryavtseva
%T Extremal properties of discrete measures, the universal sequence, and the duality principle
%J Sbornik. Mathematics
%D 1998
%P 1587-1610
%V 189
%N 11
%U http://geodesic.mathdoc.fr/item/SM_1998_189_11_a0/
%G en
%F SM_1998_189_11_a0
M. L. Gerver; E. A. Kudryavtseva. Extremal properties of discrete measures, the universal sequence, and the duality principle. Sbornik. Mathematics, Tome 189 (1998) no. 11, pp. 1587-1610. http://geodesic.mathdoc.fr/item/SM_1998_189_11_a0/

[1] Gerver M. L., Kudryavtseva E. A., “Novoe dokazatelstvo teorem ob universalnoi posledovatelnosti i ekstremalnykh svoistvakh diskretnykh mer”, UMN, 52:6 (1997), 153–154 | MR | Zbl

[2] Gerver M. L., Novoe v klassicheskoi zadache obrascheniya godografa, Preprint, MITP RAN, 1997 ; Вопросы геодинамики и сейсмологии. Вычислительная сейсмология, No 30, Наука, М., 1998 | MR

[3] Gerver M. L., Kudryavtseva E. A., “Ob ekstremalnykh svoistvakh volnovodov s konechnym chislom sloev v zadache obrascheniya godografa”, Dokl. AN, 356:1 (1997), 25–28 | MR | Zbl

[4] Gerver M. L., Kudryavtseva E. A., “Universalnaya posledovatelnost v klassicheskoi zadache obrascheniya godografa”, Matem. sb., 188:4 (1997), 3–56 | MR | Zbl

[5] Kronrod A. S., Uzly i vesa kvadraturnykh formul, Nauka, M., 1964

[6] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[7] Karlin S., Stadden V., Chebyshevskie sistemy i ikh primenenie v analize i statistike, Nauka, M., 1976 | MR

[8] Gantmakher F. R., Krein M. G., Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, GITTL, M.–L., 1950

[9] Gerver M. L., Kudryavtseva E. A., “Teorema ob otnosheniyakh predshestvovaniya, generiruemykh vpolne polozhitelnymi yadrami”, Matem. sb., 186:9 (1995), 19–44 | MR | Zbl

[10] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972