On general boundary-value problems for elliptic equations
Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1573-1586 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A theory of general boundary-value problems is developed for differential operators with symbols not necessarily satisfying the Atiyah–Bott condition that the corresponding obstruction must vanish. A condition ensuring that these problems possess the Fredholm property is introduced and the corresponding theorems are proved.
@article{SM_1998_189_10_a7,
     author = {B. Yu. Sternin and V. E. Shatalov and B. Schulze},
     title = {On general boundary-value problems for elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {1573--1586},
     year = {1998},
     volume = {189},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_10_a7/}
}
TY  - JOUR
AU  - B. Yu. Sternin
AU  - V. E. Shatalov
AU  - B. Schulze
TI  - On general boundary-value problems for elliptic equations
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1573
EP  - 1586
VL  - 189
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_10_a7/
LA  - en
ID  - SM_1998_189_10_a7
ER  - 
%0 Journal Article
%A B. Yu. Sternin
%A V. E. Shatalov
%A B. Schulze
%T On general boundary-value problems for elliptic equations
%J Sbornik. Mathematics
%D 1998
%P 1573-1586
%V 189
%N 10
%U http://geodesic.mathdoc.fr/item/SM_1998_189_10_a7/
%G en
%F SM_1998_189_10_a7
B. Yu. Sternin; V. E. Shatalov; B. Schulze. On general boundary-value problems for elliptic equations. Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1573-1586. http://geodesic.mathdoc.fr/item/SM_1998_189_10_a7/

[1] Agranovich M., “Elliptic boundary problems”, Encyclopaedia of Mathematical Sciences, eds. M. S. Agranovich, Yu. V. Egorov, M. A. Shubin, Springer-Verlag, Berlin, 1997, 1–144 | MR | Zbl

[2] Hörmander L., The Analysis of Linear Partial Differential Operators, V. II, Springer-Verlag, Berlin, 1983 | MR

[3] Atiyah M. F., Bott R., “The index problem for manifolds with boundary”, Bombay Colloquium on Differential Analysis, Oxford Univ. Press, Oxford, 1964, 175–186 | MR

[4] Rempel S., Schulze B.-W., Index Theory of Elliptic Boundary Problems, Akademie-Verlag, Berlin, 1982 | MR

[5] Schulze B.-W., “Boundary value problems and edge pseudo-differential operators”, Microlocal Analysis and Spectral Theory, ed. Luigi Rodino, Kluwer Acad. Publ., Dordrecht, 1997, 165–226 | MR | Zbl

[6] Boutet de Monvel L., “Boundary problems for pseudodifferential operators”, Acta Math., 126 (1971), 11–51 | DOI | MR | Zbl

[7] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. I; II; III”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 ; 78 (1976), 405–432 ; 79 (1976), 315–330 | DOI | MR | Zbl | DOI | MR | DOI | MR

[8] Pontryagin L. S., “Kharakteristicheskie tsikly differentsiruemykh mnogoobrazii”, Matem. sb., 21 (1947), 233–284 | MR | Zbl

[9] Bitsadze A. V., Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966

[10] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950

[11] Brenner V. A., Shargorodsky E. M., “Boundary value problems for elliptic pseudodifferential operators”, Encyclopaedia of Mathematical Sciences, eds. M. S. Agranovich, Yu. V. Egorov, M. A. Shubin, Springer-Verlag, Berlin, 1997, 145–215 | MR | Zbl

[12] Calderón A. P., “Boundary value problems for elliptic equations”, Outlines of the Joint Soviet–American Symposium on Partial Differential Equations, Novosibirsk Univ., Novosibirsk, 1963, 303–304 | MR

[13] Seeley R. T., “Singular integrals and boundary value problems”, Amer. J. Math., 88 (1966), 781–809 | DOI | MR | Zbl

[14] Seeley R. T., “Topics in pseudo-differential operators”, Pseudo-Differential Operators, Roma. C.I.M.E. Conference on pseudo-differential operators (Stresa, 1968), ed. L. Nirenberg, Cremonese, Roma, 1969, 167–305 | MR

[15] Schulze B.-W., Sternin B., Shatalov V., On General Boundary Value Problems for Elliptic Equations, Preprint No 97/35, November 1997, Univ. Potsdam, Institut für Mathematik, Potsdam | MR

[16] Calderón A. P., Lecture Notes on Pseudo-Differential Operators and Elliptic Boundary Value Problems, V. I, Instituto Argentino de Mathematica, Buenos Aires, 1976 | MR | Zbl

[17] Boutet de Monvel L., “Comportement d'un opérateur pseudo-différentiel sur une variété à bord. I; II”, J. Anal. Math., 17 (1966), 241–253 ; 255–304 | DOI | MR | Zbl

[18] Hörmander L., “Pseudo-differential operators and non-elliptic boundary problems”, Ann. of Math. (2), 83 (1966), 129–209 | DOI | MR

[19] Grubb G., “Boundary value problems for systems of partial differential operators of mixed order”, J. Funct. Anal., 26:2 (1977), 131–165 | DOI | MR | Zbl

[20] Grubb G., Seeley R., “Weakly parametric pseudo-differential operators and Atiyah–Patodi–Singer boundary problems”, Invent. Math., 121 (1995), 481–529 | DOI | MR | Zbl

[21] Hörmander L., The Analysis of Linear Partial Differential Operators, V. III, Springer-Verlag, Berlin, 1985

[22] Palais R. S., Seminar on the Atiyah–Singer Index Theorem, Princeton Univ. Press, Princeton, NJ, 1965 | MR | Zbl

[23] Douglis A., Nirenberg L., “Interior estimates for elliptic systems of partial differential equaions”, Comm. Pure Appl. Math., 8 (1955), 503–538 | DOI | MR | Zbl

[24] Atiyah M. F., $K$-Theory, The Advanced Book Program, Addison-Wesley, Cambridge, 1989 | MR | Zbl

[25] Atiyah M. F., Singer I. M., “The index of elliptic operators, III”, Ann. of Math. (2), 87 (1968), 546–604 | DOI | MR

[26] Gilkey P. B., “The boundary integrand in the formula for the signature and Euler characteristic of Riemanian manifold with boundary”, Adv. Math., 15 (1975), 334–360 | DOI | MR | Zbl

[27] Dezin A. A., Invariantnye differentsialnye operatory i granichnye zadachi, Tr. MIAN, 68, Nauka, M., 1962 | MR | Zbl

[28] Dezin A. A., Mnogomernyi analiz i diskretnye modeli, Nauka, M., 1990 | MR | Zbl

[29] Sternberg S., Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, NJ, 1964 | MR | Zbl