A generalized Heron–Tartaglia formula and some of its consequences
Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1533-1561 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The well-known formula for finding the area of a triangle in terms of its sides is generalized to volumes of polyhedra in the following way. It is proved that for a polyhedron (with triangular faces) with a given combinatorial structure $K$ and with a given collection $(l)$ of edge lengths there is a polynomial such that the volume of the polyhedron is a root of it, and the coefficients of the polynomial depend only on $K$ and $(l)$ and not on the concrete configuration of the polyhedron itself. A number of problems in the metric theory of polyhedra are solved as a consequence.
@article{SM_1998_189_10_a5,
     author = {I. Kh. Sabitov},
     title = {A generalized {Heron{\textendash}Tartaglia} formula and some of its consequences},
     journal = {Sbornik. Mathematics},
     pages = {1533--1561},
     year = {1998},
     volume = {189},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_10_a5/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - A generalized Heron–Tartaglia formula and some of its consequences
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1533
EP  - 1561
VL  - 189
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_10_a5/
LA  - en
ID  - SM_1998_189_10_a5
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T A generalized Heron–Tartaglia formula and some of its consequences
%J Sbornik. Mathematics
%D 1998
%P 1533-1561
%V 189
%N 10
%U http://geodesic.mathdoc.fr/item/SM_1998_189_10_a5/
%G en
%F SM_1998_189_10_a5
I. Kh. Sabitov. A generalized Heron–Tartaglia formula and some of its consequences. Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1533-1561. http://geodesic.mathdoc.fr/item/SM_1998_189_10_a5/

[1] Connelly R., “A counter example to the rigidity conjecture for polyhedra”, Inst. Hautes E'tudes Sci. Publ. Math., 47 (1978), 333–338 | DOI | MR

[2] Konnelli R., “Nereshennye voprosy teorii izgibaemykh poverkhnostei”, Issledovaniya po metricheskoi teorii poverkhnostei, Matematika. Novoe v zarubezhnoi nauke, 18, Mir, M., 228–238

[3] Keiner N., “Izgibaemye poliedralnye sfery v $E^3$, po Robertu Konnelli”, Issledovaniya po metricheskoi teorii poverkhnostei, Matematika. Novoe v zarubezhnoi nauke, 18, Mir, M., 210–227

[4] Sabitov I. Kh., “Ob'em mnogogrannika kak funktsiya ego metriki”, Fundament. i prikl. matem., 2:4 (1996), 1235–1246 | MR | Zbl

[5] Sabitov I. Kh., Izometricheskie otobrazheniya, izgibaniya i ob'emy v metricheskoi teorii poverkhnostei i mnogogrannikov, Dis. $\dots$ dokt. fiz.-matem. nauk, MGU, M., 1997

[6] Biggiogero G., “La geometria del tetraedro”, Enciclopedia delle Matematiche Elementari e Complementi, V. II, p. I, Fditore Ulrico Hoepli, Milano, 1950, 219–252

[7] Sabitov I. Kh., “Lokalnaya teoriya izgibanii poverkhnostei”, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 48, VINITI, M., 1989, 196–270 | MR

[8] Ivanova-Karatopraklieva I., Sabitov I. Kh., “Izgibanie poverkhnostei, II”, Itogi nauki i tekhniki. Sovr. matem. i ee prilozh. Tematicheskie obzory, 8, VINITI, M., 1995, 108–167

[9] Aleksandrov V. A., “Zamechaniya k gipoteze Sabitova o statsionarnosti ob'ema pri beskonechno malom izgibanii poverkhnosti”, Sib. matem. zhurn., 30:5 (1989), 16–24 | MR

[10] Aleksandrov V. A., “Novyi primer izgibaemogo mnogogrannika”, Sib. matem. zhurn., 36:6 (1989), 1215–1224

[11] Pavlova O. V., “Ob'em podveski kak funktsiya dlin ee reber”, UMN, 50:4 (1995), 165–166 | MR | Zbl

[12] Konnelli R., “Ob odnom podkhode k probleme neizgibaemosti”, Issledovaniya po metricheskoi teorii poverkhnostei, Matematika. Novoe v zarubezhnoi nauke, 18, Mir, M., 164–209

[13] Sabitov I. Kh., “K probleme ob invariantnosti ob'ema izgibaemogo mnogogrannika”, UMN, 50:2 (1995), 223–224 | MR | Zbl

[14] Sabitov I. Kh., “Some results in the bending theory of polyhedra”, Symmetry Cult. Sci., 6:3 (1995), 462–464 | MR

[15] Sabitov I. Kh., “Ob'em mnogogrannika kak funktsiya dlin ego reber”, Fundament. i prikl. matem., 2:1 (1996), 305–307 | MR | Zbl

[16] Sabitov I. Kh., “Dokazatelstvo gipotezy “kuznechnykh mekhov” dlya mnogogrannikov malogo topologicheskogo roda”, Dokl. AN, 358:6 (1998), 743–746 | MR | Zbl

[17] Sabitov I. Kh., “Ob'em mnogogrannika kak funktsiya dlin ego reber”, Vestn. MGU. Ser. 1. Matem., mekh., 1996, no. 6, 89–91 | MR

[18] Connelly R., Sabitov I., Walz A., “The Bellows conjecture”, Beiträge Algebra Geom., 38:1 (1997), 1–10 | MR | Zbl

[19] Astrelin A. V., Sabitov I. Kh., “Minimalnyi po stepeni mnogochlen dlya opredeleniya ob'ema oktaedra po ego metrike”, UMN, 50:5 (1995), 245–246 | MR | Zbl

[20] Berzhe M., Geometriya, T. 1, Mir, M., 1984 | MR

[21] Blumental L. M., Theory and Applications of Distance Geometry, Chelsea, New York, 1970

[22] Banchoff T., “Nonrigidity theorem for tight polyhedra”, Arch. Math. (Basel), 21:4 (1970), 416–423 | MR | Zbl

[23] Milka A. D., “Lineinye izgibaniya pravilnykh vypuklykh mnogogrannikov”, Matem. fizika, analiz, geom., 1:1 (1994), 116–130 | MR | Zbl

[24] Bleecker D., “Volume increasing isometric deformations of convex polyhedra”, J. Differential Geom., 43 (1996), 505–526 | MR | Zbl

[25] Burago Yu. D., Zalgaller V. A., “Izometricheskaie kusochno-lineinye pogruzheniya dvumernykh mnogoobrazii s poliedralnoi metrikoi v $\mathbb R^3$”, Algebra i analiz, 7:3 (1995), 76–95 | MR | Zbl

[26] Alexandrov V., “An example of a flexible polyhedron with nonconstant volume in the spherical space”, Beiträge Algebra Geom., 38:1 (1997), 11–18 | MR | Zbl

[27] Alexander R., “Lipschitzian mappings and total mean curvature of polyhedral surfaces, I”, Trans. Amer. Math. Soc., 288:2 (1985), 661–678 | DOI | MR | Zbl

[28] Boltyanskii V. G., Tretya problema Gilberta, Nauka, M., 1977 | MR

[29] Aleksandrov A. D., Vnutrennyaya geometriya vypuklykh poverkhnostei, Gostekhizdat, M.–L., 1946

[30] Aleksandrov A. D., Vypuklye mnogogranniki, Gostekhizdat, M.–L., 1950 | MR

[31] Sabitov I. Kh., “Ob'em mnogogrannika kak funktsiya ego metriki i reshenie osnovnykh problem metricheskoi teorii mnogogrannikov”, Mezhd. shkola-seminar pamyati N. V. Efimova, Tezisy dokladov, NPP Korall-mikro, Rostov-na-Donu, 1996, 64–65

[32] Burago Yu. D., “Geometriya poverkhnostei v evklidovykh prostranstvakh”, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napr., 48, VINITI, M., 1989, 5–97 | MR

[33] Ivanova-Karatopraklieva I., Sabitov I. Kh., “Izgibanie poverkhnostei, I”, Itogi nauki i tekhn. Problemy geometrii, 23, VINITI, M., 1991, 131–184 | MR

[34] Kuiper N., “Sphères Polyèdriques Flexibles dans $E^3$”, d'après Robert Connelly, Séminaire Bourbaki, 30-e année, 1977/78, no. 514, 1–22; Lecture Notes in Matematics, 677, 1978