Asymptotic and Fredholm representations of discrete groups
Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1485-1504 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A $C^*$-algebra servicing the theory of asymptotic representations and its embedding into the Calkin algebra that induces an isomorphism of $K_1$-groups is constructed. As a consequence, it is shown that all vector bundles over the classifying space $B\pi$ that can be obtained by means of asymptotic representations of a discrete group $\pi$ can also be obtained by means of representations of the group $\pi \times {\mathbb Z}$ into the Calkin algebra. A generalization of the concept of Fredholm representation is also suggested, and it is shown that an asymptotic representation can be regarded as an asymptotic Fredholm representation.
@article{SM_1998_189_10_a2,
     author = {V. M. Manuilov and A. S. Mishchenko},
     title = {Asymptotic and {Fredholm} representations of discrete groups},
     journal = {Sbornik. Mathematics},
     pages = {1485--1504},
     year = {1998},
     volume = {189},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_10_a2/}
}
TY  - JOUR
AU  - V. M. Manuilov
AU  - A. S. Mishchenko
TI  - Asymptotic and Fredholm representations of discrete groups
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1485
EP  - 1504
VL  - 189
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_10_a2/
LA  - en
ID  - SM_1998_189_10_a2
ER  - 
%0 Journal Article
%A V. M. Manuilov
%A A. S. Mishchenko
%T Asymptotic and Fredholm representations of discrete groups
%J Sbornik. Mathematics
%D 1998
%P 1485-1504
%V 189
%N 10
%U http://geodesic.mathdoc.fr/item/SM_1998_189_10_a2/
%G en
%F SM_1998_189_10_a2
V. M. Manuilov; A. S. Mishchenko. Asymptotic and Fredholm representations of discrete groups. Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1485-1504. http://geodesic.mathdoc.fr/item/SM_1998_189_10_a2/

[1] Mishchenko A. S., Noor Mohammad, “Asymptotical representations of discrete groups”, Lie Groups and Lie Algebras Their Representations, Generalizations and Applications, Mathematics and Its Applications, 433, Kluwer Academic Press, Dordrecht, 1998, 299–312 | MR | Zbl

[2] Connes A., Gromov M., Moscovici H., “Conjecture de Novikov et fibrés presque plats”, C. R. Acad. Sci. Paris. Sér. I. Math., 310 (1990), 273–277 | MR | Zbl

[3] Connes A., Higson N., “Deformations, morphismes asymptotiques et $K$-theorie bivariante”, C. R. Acad. Sci. Paris. Sér. I. Math., 311 (1990), 101–106 | MR | Zbl

[4] Loring T. A., Pedersen G. K., “Corona extendibility and asymptotic multiplicativity”, $K$-Theory, 11 (1997), 83–102 | DOI | MR | Zbl

[5] Connes A., “An analogue of the Thom isomorphism for crossed products of a $C^*$-algebra by an action of ${\mathbb R}$”, Adv. Math., 39 (1981), 31–55 | DOI | MR | Zbl

[6] Mischenko A. S., “O fredgolmovykh predstavleniyakh diskretnykh grupp”, Funkts. analiz i ego prilozh., 9:2 (1975), 36–41 | MR | Zbl

[7] Arveson W., “Notes on extensions of $C^*$-algebras”, Duke Math. J., 44 (1977), 329–355 | DOI | MR | Zbl

[8] Voiculescu D., “Asymptotically commuting finite rank unitary operators without commuting approximants”, Acta Sci. Math. (Szeged), 45 (1983), 429–431 | MR | Zbl