The structure of optimal synthesis in a neighbourhood of singular manifolds for problems that are affine in control
Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1467-1484 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The question of the classification of the phase portraits of optimal synthesis in a neighbourhood of a singular universal manifold is discussed for systems of constant rank that are affine in control. Both phase state and control are assumed to be many-dimensional. The classification is based on the order of the singular extremals and the property of involutiveness (or otherwise) of the velocity indicator. The synthesis of optimal trajectories is shown to be a space fibred over the base $W$ consisting of singular optimal trajectories; its fibres are non-singular optimal trajectories. If the control is many-dimensional, then $W$ is a stratified manifold. In the involutive case the fibres are one-dimensional. In the non-involutive case the fibres are many-dimensional and contain chattering trajectories; the dimension of the fibres and the structure of the field of trajectories in the fibres depend on the order of the singular extremals.
@article{SM_1998_189_10_a1,
     author = {M. I. Zelikin and L. F. Zelikina},
     title = {The structure of optimal synthesis in a~neighbourhood of singular manifolds for problems that are affine in control},
     journal = {Sbornik. Mathematics},
     pages = {1467--1484},
     year = {1998},
     volume = {189},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_10_a1/}
}
TY  - JOUR
AU  - M. I. Zelikin
AU  - L. F. Zelikina
TI  - The structure of optimal synthesis in a neighbourhood of singular manifolds for problems that are affine in control
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1467
EP  - 1484
VL  - 189
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_10_a1/
LA  - en
ID  - SM_1998_189_10_a1
ER  - 
%0 Journal Article
%A M. I. Zelikin
%A L. F. Zelikina
%T The structure of optimal synthesis in a neighbourhood of singular manifolds for problems that are affine in control
%J Sbornik. Mathematics
%D 1998
%P 1467-1484
%V 189
%N 10
%U http://geodesic.mathdoc.fr/item/SM_1998_189_10_a1/
%G en
%F SM_1998_189_10_a1
M. I. Zelikin; L. F. Zelikina. The structure of optimal synthesis in a neighbourhood of singular manifolds for problems that are affine in control. Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1467-1484. http://geodesic.mathdoc.fr/item/SM_1998_189_10_a1/

[1] Bushaw D. W., Differential equations with a discontinuous forcing term, Princeton Univ., Dept. of Math., Princeton, 1952

[2] Feldbaum A. A., Osnovy teorii optimalnykh avtomaticheskikh sistem, Nauka, M., 1966 | MR | Zbl

[3] Boltyanskii V. G., “Dostatochnye usloviya optimalnosti”, Dokl. AN SSSR, 140:5 (1961), 994–997 | MR | Zbl

[4] Brunovsky P., “Existence of regular synthesis for general control problems”, J. Differential Equations, 38:3 (1980), 317–343 | DOI | MR | Zbl

[5] Zelikina L. F., “K voprosu o regulyarnom sinteze”, Dokl. AN SSSR, 267:3 (1982), 532–535 | MR | Zbl

[6] Kupka I., “The ubiquity of Fuller's phenomenon”, Nonlinear controlllability and optimal control, Monograph Textbooks Pure Appl. Math., 133, ed. H. Z. Sussman, Dekker, New York, 1990, 313–350 | MR | Zbl

[7] Zelikin M., Borisov V., Theory of Chattering Control with Applications to Cosmonautics, Robotics, Economics, and Engineering, Birkhäuser, Boston, 1994 | MR | Zbl

[8] Baitman M. M., Sintez optimalnykh traektorii na ploskosti, Zinatne, Riga, 1971 | MR | Zbl

[9] Sussmann H. J., “The structure of time-optimal trajectories for single input systems in the plane: the general real-analytic case”, SIAM J. Control Optim., 25 (1987), 868–904 | DOI | MR | Zbl

[10] Zelikina L. F., “Mnogomernyi sintez i teoremy o magistrali v zadachakh optimalnogo upravleniya”, Veroyatnostnye problemy upravleniya v ekonomike, Nauka, M., 1977, 33–114 | MR

[11] Lobry C., “Contrôlabilité des systèmes non linéaires”, SIAM J. Control Optim., 8 (1970), 573–605 | DOI | MR | Zbl

[12] Schättler H., “On the local structure of time-optimal bang-bang trajectories in $\mathbb R^3$”, SIAM J. Control Optim., 26 (1988), 186–204 | DOI | MR | Zbl

[13] Krener A. J., Schättler H., “The structure of small-time reachable sets in low dimensions”, SIAM J. Control Optim., 27 (1989), 120–147 | DOI | MR | Zbl

[14] Agrachev A., Kupka I., Gauthier J.-P., “Generic Singularities of Sub-Riemannian metrics on $\mathbb R^3$”, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 377–384 | MR | Zbl

[15] Zelikin M. I., Borisov V. F., “Rezhimy uchaschayuschikhsya pereklyuchenii v zadachakh optimalnogo upravleniya”, Tr. MIAN, 197, Nauka, M., 1991, 85–166 | MR

[16] Filippov A. F., “Differentsialnye uravneniya s razryvnoi pravoi chastyu”, Matem. sb., 51 (93):1 (1960), 99–128 | MR | Zbl

[17] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[18] Zelikin M. I., “Sintez optimalnykh traektorii na prostranstvakh predstavlenii grupp Li”, Matem. sb., 132:4 (1987), 541–555

[19] Zelikin M. I., “On the singular arcs”, Problems Control Inform Theory, 14:2 (1985), 75–88 | MR | Zbl

[20] Tom R., “Lokalnye topologicheskie svoistva differentsiruemykh otobrazhenii”, Osobennosti differentsiruemykh otobrazhenii, Mir, M., 1968, 164–178 | MR

[21] Kelley H. J., Kopp R. E., Moyer H. G., “Singular extremals”, Topics in optimization, ed. G. Leitmann, Acad. Press, New York, 1967, 63–103 | MR

[22] Lewis R. M., “Definitions of order and junction conditions in singular optimal control problems”, SIAM J. Control Optim., 18 (1980), 21–32 | DOI | MR | Zbl

[23] Manita L. A., “Povedenie ekstremalei v okrestnosti osobykh rezhimov i negladkie funktsii Lyapunova v zadachakh optimalnogo upravleniya”, Fundament. i prikl. matem., 2:2 (1996), 449–485 | MR

[24] Borisov V. F., “O chisle predelnykh tsiklov faktor-sistemy $n$-mernoi zadachi Fullera”, Matem. sb., 187:12 (1996), 3–20 | MR | Zbl