The structure of optimal synthesis in a~neighbourhood of singular manifolds for problems that are affine in control
Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1467-1484
Voir la notice de l'article provenant de la source Math-Net.Ru
The question of the classification of the phase portraits of optimal synthesis in a neighbourhood of a singular universal manifold is discussed for systems of constant rank that are affine in control. Both phase state and control are assumed to be many-dimensional. The classification is based on the order of the singular extremals and the property of involutiveness (or otherwise) of the velocity indicator. The synthesis of optimal trajectories is shown to be a space fibred over the base $W$ consisting of singular optimal trajectories; its fibres are non-singular optimal trajectories. If the control is many-dimensional, then $W$ is a stratified manifold. In the involutive case the fibres are one-dimensional. In the non-involutive case the fibres are many-dimensional and contain chattering trajectories; the dimension of the fibres and the structure of the field of trajectories in the fibres depend on the order of the singular extremals.
@article{SM_1998_189_10_a1,
author = {M. I. Zelikin and L. F. Zelikina},
title = {The structure of optimal synthesis in a~neighbourhood of singular manifolds for problems that are affine in control},
journal = {Sbornik. Mathematics},
pages = {1467--1484},
publisher = {mathdoc},
volume = {189},
number = {10},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_10_a1/}
}
TY - JOUR AU - M. I. Zelikin AU - L. F. Zelikina TI - The structure of optimal synthesis in a~neighbourhood of singular manifolds for problems that are affine in control JO - Sbornik. Mathematics PY - 1998 SP - 1467 EP - 1484 VL - 189 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1998_189_10_a1/ LA - en ID - SM_1998_189_10_a1 ER -
%0 Journal Article %A M. I. Zelikin %A L. F. Zelikina %T The structure of optimal synthesis in a~neighbourhood of singular manifolds for problems that are affine in control %J Sbornik. Mathematics %D 1998 %P 1467-1484 %V 189 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1998_189_10_a1/ %G en %F SM_1998_189_10_a1
M. I. Zelikin; L. F. Zelikina. The structure of optimal synthesis in a~neighbourhood of singular manifolds for problems that are affine in control. Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1467-1484. http://geodesic.mathdoc.fr/item/SM_1998_189_10_a1/