Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry
Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1441-1466
Voir la notice de l'article provenant de la source Math-Net.Ru
Classical and new results on integrable geodesic flows on two-dimensional surfaces are reviewed. The central question is the classification of such flows up to various equivalences, of which the following four kinds are the most interesting ones: 1) isometry; 2) geodesic equivalence;
3) orbital equivalence; 4) Liouville equivalence.
@article{SM_1998_189_10_a0,
author = {A. V. Bolsinov and V. S. Matveev and A. T. Fomenko},
title = {Two-dimensional {Riemannian} metrics with integrable geodesic flows. {Local} and global geometry},
journal = {Sbornik. Mathematics},
pages = {1441--1466},
publisher = {mathdoc},
volume = {189},
number = {10},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_10_a0/}
}
TY - JOUR AU - A. V. Bolsinov AU - V. S. Matveev AU - A. T. Fomenko TI - Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry JO - Sbornik. Mathematics PY - 1998 SP - 1441 EP - 1466 VL - 189 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1998_189_10_a0/ LA - en ID - SM_1998_189_10_a0 ER -
%0 Journal Article %A A. V. Bolsinov %A V. S. Matveev %A A. T. Fomenko %T Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry %J Sbornik. Mathematics %D 1998 %P 1441-1466 %V 189 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1998_189_10_a0/ %G en %F SM_1998_189_10_a0
A. V. Bolsinov; V. S. Matveev; A. T. Fomenko. Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry. Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1441-1466. http://geodesic.mathdoc.fr/item/SM_1998_189_10_a0/