@article{SM_1998_189_10_a0,
author = {A. V. Bolsinov and V. S. Matveev and A. T. Fomenko},
title = {Two-dimensional {Riemannian} metrics with integrable geodesic flows. {Local} and global geometry},
journal = {Sbornik. Mathematics},
pages = {1441--1466},
year = {1998},
volume = {189},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_10_a0/}
}
TY - JOUR AU - A. V. Bolsinov AU - V. S. Matveev AU - A. T. Fomenko TI - Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry JO - Sbornik. Mathematics PY - 1998 SP - 1441 EP - 1466 VL - 189 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_1998_189_10_a0/ LA - en ID - SM_1998_189_10_a0 ER -
%0 Journal Article %A A. V. Bolsinov %A V. S. Matveev %A A. T. Fomenko %T Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry %J Sbornik. Mathematics %D 1998 %P 1441-1466 %V 189 %N 10 %U http://geodesic.mathdoc.fr/item/SM_1998_189_10_a0/ %G en %F SM_1998_189_10_a0
A. V. Bolsinov; V. S. Matveev; A. T. Fomenko. Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry. Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1441-1466. http://geodesic.mathdoc.fr/item/SM_1998_189_10_a0/
[1] Babenko I. K., Nekhoroshev N. N., “O kompleksnykh strukturakh na dvumernykh torakh, dopuskayuschikh metriki s netrivialnym kvadratichnym integralom”, Matem. zametki, 58:5 (1995), 643–652 | MR | Zbl
[2] Birkgof Dzh. D., Dinamicheskie sistemy, Gostekhizdat, M.–L., 1941
[3] Bogoyavlenskii O. I., “Integriruemye sluchai dinamiki tverdogo tela i integriruemye sistemy na sferakh $S^n$”, Izv. AN SSSR. Ser. matem., 49:5 (1985), 899–915 | MR
[4] Bolsinov A. V., Kozlov V. V., Fomenko A. T., “Printsip Mopertyui i geodezicheskie potoki na sfere, voznikayuschie iz integriruemykh sluchaev dinamiki tverdogo tela”, UMN, 50:3 (1995), 3–32 | MR | Zbl
[5] Brailov A. V., “Nekotorye sluchai polnoi integriruemosti uravnenii Eilera i prilozheniya”, Dokl. AN SSSR, 268:5 (1983), 1043–1046 | MR | Zbl
[6] Byalyi M. L., “O polinomialnykh po impulsam pervykh integralakh dlya mekhanicheskoi sistemy na dvumernom tore”, Funkts. analiz i ego prilozh., 21:4 (1987), 64–65 | MR | Zbl
[7] Kozlov V. V., “Topologicheskie prepyatstviya k integriruemosti naturalnykh mekhanicheskikh sistem”, Dokl. AN SSSR, 249:6 (1979), 1299–1302 | MR | Zbl
[8] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo UdGU, Izhevsk, 1995 | MR | Zbl
[9] Kozlov V. V., Denisova N. V., “Polinomialnye integraly geodezicheskikh potokov na tore”, Matem. sb., 185:12 (1994), 49–64 | MR | Zbl
[10] Kozlov V. V., Treschev D. V., “Ob integriruemosti gamiltonovykh sistem s toricheskim prostranstvom polozhenii”, Matem. sb., 135(177):1 (1988), 119–138
[11] Kolokoltsov V. N., “Geodezicheskie potoki na dvumernykh mnogoobraziyakh s dopolnitelnym polinomialnym po skorostyam pervym integralom”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 994–1010 | MR | Zbl
[12] Kolokoltsov V. N., “Novye primery mnogoobrazii s zamknutymi geodezicheskimi”, Vestn. MGU. Ser. 1. Matem., mekh., 1984, no. 4, 80–82 | MR | Zbl
[13] Matveev V. S., “Primer geodezicheskogo potoka na butylke Kleina, integriruemogo polinomom po impulsam chetvertoi stepeni”, Vestn. MGU. Ser. 1. Matem., mekh., 1997, no. 4, 47–48 | Zbl
[14] Matveev V. S., “Kvadratichno integriruemye geodezicheskie potoki na tore i butylke Kleina”, Reg. i khaotich. dinamika, 2:1 (1997), 96–102 | MR | Zbl
[15] Mischenko A. S., “Integrirovanie geodezicheskikh potokov na simmetricheskikh prostranstvakh”, Matem. zametki, 31:2 (1982), 257–262 | MR | Zbl
[16] Mischenko A. S., Fomenko A. T., “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 396–415 | MR | Zbl
[17] Stëpin A. M., “Dinamicheskie sistemy na odnorodnykh prostranstvakh poluprostykh grupp Li”, Izv. AN SSSR. Ser. matem., 37:5 (1973), 1091–1107 | MR | Zbl
[18] Taimanov I. A., “Topologicheskie prepyatstviya k integriruemosti geodezicheskikh potokov na neodnosvyaznykh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 429–435 | MR
[19] Taimanov I. A., “O topologicheskikh svoistvakh integriruemykh geodezicheskikh potokov”, Matem. zametki, 44:2 (1988), 283–284 | MR | Zbl
[20] Adler M., van Moerbeke P., “The Kowalewski and Henon–Heiles motions as Manakov geodesic flows on $\operatorname{SO}(4)$. A two-dimensional family of Lax pairs”, Comm. Meth. Phys., 113:4 (1988), 659–700 | DOI | MR
[21] Darboux G., Lecons sur la théorie generale des surfaces et les applications géometriques du calcul infenitesimal, Gauthier-Villars, Paris, 1891
[22] Kiyohara K., “Two classes of Riemannian manifolds whose geodesic flows are integrable”, Mem. Amer. Math. Soc., 130:619 (1997), 1–143 | MR
[23] Kiyohara K., “Compact Liouville surfaces”, J. Math. Soc. Japan, 43 (1991), 555–591 | DOI | MR | Zbl
[24] Paternain G. P., “On the topology of manifolds with competely integrable geodesic flows”, Ergodic Theory Dynam. Systems, 12 (1992), 109–121 | DOI | MR
[25] Paternain G. P., Spatzier R. J., “New examples of manifolds with completely integrable geoidesic flows”, Adv. Math., 108:2 (1994), 346–366 | DOI | MR | Zbl
[26] Spatzier R. J., “Riemannian Manifolds with Completely Integrable Geodesic Flows”, Proc. Sympos. Pure Math., 54:3 (1993), 599–608 | MR | Zbl
[27] Thimm A., “Integrable geodesic flows on homogeneous spaces”, Ergodic Theory Dynam. Systems, 1:4 (1981), 495–517 | DOI | MR | Zbl
[28] Nguen T. Z., “Topologicheskie invarianty integriruemykh geodezicheskikh potokov na mnogomernom tore i sfere”, Tr. MIAN, 205, Nauka, M., 1994, 73–90 | MR | Zbl
[29] Yakobi K., Lektsii po dinamike, ONTI, M.–L., 1936
[30] Knörrer H., “Geodesics of the ellipsoid”, Invent. Math., 39 (1980), 119–143 | DOI | MR
[31] Oshemkov A. A., “Fomenko Invariants for the Main Integrable Cases of the Rigid Body Motion Equations”, Adv. Soviet Math., 6 (1991), 67–146 | MR | Zbl
[32] Bolsinov A. V., Fomenko A. T., Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, Nauka, M., 1997 | MR
[33] Fomenko A. T., “Topological Classification of All Integrable Hamiltonian Differential Equations of General Type with Two Degrees of Freedom”, The Geometry of Hamiltonian Systems, Proc. of a Workshop (June 5–16, 1989. Berkeley, USA), Springer-Verlag, 1991, 131–339 | MR
[34] Matveev S. V., Fomenko A. T., “Teoriya tipa Morsa dlya integriruemykh gamiltonovykh sistem s ruchnymi integralami”, Matem. zametki, 43:5 (1988), 663–671 | MR
[35] Dini U., “Sopra un problema che si presenta nella theoria generale delle rappresetazioni geografice di una superficie su di unaltra”, Ann. di Math. Ser. 2, 3 (1869), 269–293
[36] Bolsinov A. V., Fomenko A. T., Geometriya i topologiya integriruemykh geodezicheskikh potokov na poverkhnostyakh, Izd-vo URSS, M. (to appear) | Zbl
[37] Ten V. V., “Lokalnye integraly geodezicheskikh potokov”, Reg. i khaotich. dinamika, 2:2 (1997), 87–89 | MR | Zbl
[38] Calogero F., “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 | DOI | MR
[39] Moser J., “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR | Zbl
[40] Toda M., Theory of nonlinear lattices, Springer-Verlag, Berlin, 1981 | MR | Zbl
[41] Babenko I. K., Les flots géodesiques quadratiquement intégrables sur les surfaces fermées et les structures complexes correspondantes, Preprint, Inst. de Recherche Math. Avancée | Zbl
[42] Nguen T. Z., Polyakova L. S., Selivanova E. N., “Topologicheskaya klassifikatsiya integriruemykh geodezicheskikh potokov s dopolnitelnym kvadratichnym ili lineinym po impulsam integralom na dvumernykh orientiruemykh rimanovykh mnogoobraziyakh”, Funkts. analiz, 27:3 (1993), 42–56 | MR
[43] Chaplygin S. A., “Novoe chastnoe reshenie zadachi o dvizhenii tverdogo tela v zhidkosti”, Sobranie sochinenii, T. 1, OGIZ, M.–L., 1948, 337–346
[44] Goryachev D. N., “Novye sluchai integriruemosti dinamicheskikh uravnenii Eilera”, Varshav. Univ. Izv., 3 (1916), 1–15
[45] Kalashnikov V. V. (ml.), “Topologicheskaya klassifikatsiya kvadratichno integriruemykh geodezicheskikh potokov na dvumernom tore”, UMN, 50:1 (1995), 201–202 | MR | Zbl
[46] Selivanova E. N., “Traektornye izomorfizmy liuvillevykh sistem na dvumernom tore”, Matem. sb., 186:10 (1995), 141–160 | MR | Zbl
[47] Besse A., Mnogoobraziya s zamknutymi geodezicheskimi, Mir, M., 1981 | MR