Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry
Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1441-1466

Voir la notice de l'article provenant de la source Math-Net.Ru

Classical and new results on integrable geodesic flows on two-dimensional surfaces are reviewed. The central question is the classification of such flows up to various equivalences, of which the following four kinds are the most interesting ones: 1) isometry; 2) geodesic equivalence; 3) orbital equivalence; 4) Liouville equivalence.
@article{SM_1998_189_10_a0,
     author = {A. V. Bolsinov and V. S. Matveev and A. T. Fomenko},
     title = {Two-dimensional {Riemannian} metrics with integrable geodesic flows. {Local} and global geometry},
     journal = {Sbornik. Mathematics},
     pages = {1441--1466},
     publisher = {mathdoc},
     volume = {189},
     number = {10},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_10_a0/}
}
TY  - JOUR
AU  - A. V. Bolsinov
AU  - V. S. Matveev
AU  - A. T. Fomenko
TI  - Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1441
EP  - 1466
VL  - 189
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_10_a0/
LA  - en
ID  - SM_1998_189_10_a0
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%A V. S. Matveev
%A A. T. Fomenko
%T Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry
%J Sbornik. Mathematics
%D 1998
%P 1441-1466
%V 189
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_10_a0/
%G en
%F SM_1998_189_10_a0
A. V. Bolsinov; V. S. Matveev; A. T. Fomenko. Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry. Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1441-1466. http://geodesic.mathdoc.fr/item/SM_1998_189_10_a0/