@article{SM_1997_188_9_a5,
author = {K. Yu. Osipenko},
title = {On the precise values of $n$-widths for classes defined by cyclic variation diminishing operators},
journal = {Sbornik. Mathematics},
pages = {1371--1383},
year = {1997},
volume = {188},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_9_a5/}
}
K. Yu. Osipenko. On the precise values of $n$-widths for classes defined by cyclic variation diminishing operators. Sbornik. Mathematics, Tome 188 (1997) no. 9, pp. 1371-1383. http://geodesic.mathdoc.fr/item/SM_1997_188_9_a5/
[1] Pinkus A., $n$-Widths in Approximation Theory, Springer-Verlag, Berlin, 1985 | MR
[2] Nguen Tkhi Tkheu Khoa, “Nailuchshie kvadraturnye formuly i metody vosstanovleniya funktsii, opredelyaemykh yadrami, ne uvelichivayuschimi ostsillyatsiyu”, Matem. sb., 130:1 (1986), 105–119 | MR | Zbl
[3] Nguen Tkhi Tkheu Khoa, “Nekotorye ekstremalnye zadachi na klassakh funktsii, zadavaemykh lineinymi differentsialnymi operatorami”, Matem. sb., 180:10 (1989), 1355–1395
[4] Osipenko K. Yu., “Ob $n$-poperechnikakh, optimalnykh kvadraturnykh formulakh i optimalnom vosstanovlenii funktsii, analiticheskikh v polose”, Izv. RAN. Ser. matem., 58:4 (1994), 55–79 | MR | Zbl
[5] Osipenko K. Yu., “Exact values of $n$-widths and optimal quadratures on classes of bounded analytic and harmonic functions”, J. Approx. Theory, 82:1 (1995), 156–175 | DOI | MR | Zbl
[6] Osipenko K. Yu., “Exact $n$-widths of Hardy–Sobolev classes”, Constr. Approx., 13 (1997), 17–27 | DOI | MR | Zbl
[7] Karlin S., Total Positivity, V. I, Stanford Univ. Press, Stanford, 1968 | MR
[8] Krein M. G., “K teorii nailuchshego priblizheniya periodicheskikh funktsii”, Dokl. AN SSSR, 18:4–5 (1938), 245–251
[9] Tikhomirov V. M., “Nailuchshie metody priblizheniya i interpolirovaniya differentsiruemykh funktsii v prostranstve $C[-1,1]$”, Matem. sb., 80 (122) (1969), 290–304 | MR | Zbl
[10] Nguen Tkhi Tkheu Khoa, “Operator $D(D^2+1^2)\dotsb(D^2+n^2)$ i trigonometricheskaya interpolyatsiya”, Anal. Math., 15:4 (1989), 291–306 | MR
[11] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR