On the precise values of $n$-widths for classes defined by cyclic variation diminishing operators
Sbornik. Mathematics, Tome 188 (1997) no. 9, pp. 1371-1383
Voir la notice de l'article provenant de la source Math-Net.Ru
A general approach to the problems of precise calculation of $n$-widths in the uniform metric is proposed for the classes of 2$\pi$-periodic functions defined by (not necessarily linear) operators having certain oscillation properties. This approach enables one to obtain precise results on $n$-widths both for classes of functions representable as convolutions with cyclic variation diminishing kernels and for some classes of analytic functions not representable as such convolutions.
@article{SM_1997_188_9_a5,
author = {K. Yu. Osipenko},
title = {On the precise values of $n$-widths for classes defined by cyclic variation diminishing operators},
journal = {Sbornik. Mathematics},
pages = {1371--1383},
publisher = {mathdoc},
volume = {188},
number = {9},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_9_a5/}
}
TY - JOUR AU - K. Yu. Osipenko TI - On the precise values of $n$-widths for classes defined by cyclic variation diminishing operators JO - Sbornik. Mathematics PY - 1997 SP - 1371 EP - 1383 VL - 188 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1997_188_9_a5/ LA - en ID - SM_1997_188_9_a5 ER -
K. Yu. Osipenko. On the precise values of $n$-widths for classes defined by cyclic variation diminishing operators. Sbornik. Mathematics, Tome 188 (1997) no. 9, pp. 1371-1383. http://geodesic.mathdoc.fr/item/SM_1997_188_9_a5/