On the precise values of $n$-widths for classes defined by cyclic variation diminishing operators
Sbornik. Mathematics, Tome 188 (1997) no. 9, pp. 1371-1383 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general approach to the problems of precise calculation of $n$-widths in the uniform metric is proposed for the classes of 2$\pi$-periodic functions defined by (not necessarily linear) operators having certain oscillation properties. This approach enables one to obtain precise results on $n$-widths both for classes of functions representable as convolutions with cyclic variation diminishing kernels and for some classes of analytic functions not representable as such convolutions.
@article{SM_1997_188_9_a5,
     author = {K. Yu. Osipenko},
     title = {On the precise values of $n$-widths for classes defined by cyclic variation diminishing operators},
     journal = {Sbornik. Mathematics},
     pages = {1371--1383},
     year = {1997},
     volume = {188},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_9_a5/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - On the precise values of $n$-widths for classes defined by cyclic variation diminishing operators
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1371
EP  - 1383
VL  - 188
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_9_a5/
LA  - en
ID  - SM_1997_188_9_a5
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T On the precise values of $n$-widths for classes defined by cyclic variation diminishing operators
%J Sbornik. Mathematics
%D 1997
%P 1371-1383
%V 188
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1997_188_9_a5/
%G en
%F SM_1997_188_9_a5
K. Yu. Osipenko. On the precise values of $n$-widths for classes defined by cyclic variation diminishing operators. Sbornik. Mathematics, Tome 188 (1997) no. 9, pp. 1371-1383. http://geodesic.mathdoc.fr/item/SM_1997_188_9_a5/

[1] Pinkus A., $n$-Widths in Approximation Theory, Springer-Verlag, Berlin, 1985 | MR

[2] Nguen Tkhi Tkheu Khoa, “Nailuchshie kvadraturnye formuly i metody vosstanovleniya funktsii, opredelyaemykh yadrami, ne uvelichivayuschimi ostsillyatsiyu”, Matem. sb., 130:1 (1986), 105–119 | MR | Zbl

[3] Nguen Tkhi Tkheu Khoa, “Nekotorye ekstremalnye zadachi na klassakh funktsii, zadavaemykh lineinymi differentsialnymi operatorami”, Matem. sb., 180:10 (1989), 1355–1395

[4] Osipenko K. Yu., “Ob $n$-poperechnikakh, optimalnykh kvadraturnykh formulakh i optimalnom vosstanovlenii funktsii, analiticheskikh v polose”, Izv. RAN. Ser. matem., 58:4 (1994), 55–79 | MR | Zbl

[5] Osipenko K. Yu., “Exact values of $n$-widths and optimal quadratures on classes of bounded analytic and harmonic functions”, J. Approx. Theory, 82:1 (1995), 156–175 | DOI | MR | Zbl

[6] Osipenko K. Yu., “Exact $n$-widths of Hardy–Sobolev classes”, Constr. Approx., 13 (1997), 17–27 | DOI | MR | Zbl

[7] Karlin S., Total Positivity, V. I, Stanford Univ. Press, Stanford, 1968 | MR

[8] Krein M. G., “K teorii nailuchshego priblizheniya periodicheskikh funktsii”, Dokl. AN SSSR, 18:4–5 (1938), 245–251

[9] Tikhomirov V. M., “Nailuchshie metody priblizheniya i interpolirovaniya differentsiruemykh funktsii v prostranstve $C[-1,1]$”, Matem. sb., 80 (122) (1969), 290–304 | MR | Zbl

[10] Nguen Tkhi Tkheu Khoa, “Operator $D(D^2+1^2)\dotsb(D^2+n^2)$ i trigonometricheskaya interpolyatsiya”, Anal. Math., 15:4 (1989), 291–306 | MR

[11] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR