On the precise values of $n$-widths for classes defined by cyclic variation diminishing operators
Sbornik. Mathematics, Tome 188 (1997) no. 9, pp. 1371-1383

Voir la notice de l'article provenant de la source Math-Net.Ru

A general approach to the problems of precise calculation of $n$-widths in the uniform metric is proposed for the classes of 2$\pi$-periodic functions defined by (not necessarily linear) operators having certain oscillation properties. This approach enables one to obtain precise results on $n$-widths both for classes of functions representable as convolutions with cyclic variation diminishing kernels and for some classes of analytic functions not representable as such convolutions.
@article{SM_1997_188_9_a5,
     author = {K. Yu. Osipenko},
     title = {On the precise values of $n$-widths for classes defined by cyclic variation diminishing operators},
     journal = {Sbornik. Mathematics},
     pages = {1371--1383},
     publisher = {mathdoc},
     volume = {188},
     number = {9},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_9_a5/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - On the precise values of $n$-widths for classes defined by cyclic variation diminishing operators
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1371
EP  - 1383
VL  - 188
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_9_a5/
LA  - en
ID  - SM_1997_188_9_a5
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T On the precise values of $n$-widths for classes defined by cyclic variation diminishing operators
%J Sbornik. Mathematics
%D 1997
%P 1371-1383
%V 188
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_9_a5/
%G en
%F SM_1997_188_9_a5
K. Yu. Osipenko. On the precise values of $n$-widths for classes defined by cyclic variation diminishing operators. Sbornik. Mathematics, Tome 188 (1997) no. 9, pp. 1371-1383. http://geodesic.mathdoc.fr/item/SM_1997_188_9_a5/