@article{SM_1997_188_9_a1,
author = {V. V. Volchkov},
title = {Solution of the~support problem for several function classes},
journal = {Sbornik. Mathematics},
pages = {1279--1294},
year = {1997},
volume = {188},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_9_a1/}
}
V. V. Volchkov. Solution of the support problem for several function classes. Sbornik. Mathematics, Tome 188 (1997) no. 9, pp. 1279-1294. http://geodesic.mathdoc.fr/item/SM_1997_188_9_a1/
[1] Zalcman L., “A bibliographic survey of the Pompeiu problem”, Approximation by solutions of partial differential equations, eds. Fuglede B. et al., Kluwer Acad. Publ., 1992, 185–194 | MR | Zbl
[2] Sitaram A., “Fourier analysis and determining sets for Radon measures on $\mathbb R^n$”, Illinois J. Math., 28 (1984), 339–347 | MR | Zbl
[3] Shahshahani M., Sitaram A., “The Pompeiu problem in exterior domains in symmetric spaces”, Contemp. Math., 63 (1987), 267–277 | MR | Zbl
[4] Eguchi M., “An application of topological Paley–Wiener theorems to invariant differential equations on symmetric spacer”, Lect. Notes in Math., 739, Springer-Verlag, Berlin, 1979, 192–206 | MR
[5] Berenstein C. A., Gay R., Yger A., “The three squares theorem, a local version”, Analysis and partial differential equations, ed. Sadosky C., Marcel Deccer, New York, 1990, 35–50 | MR
[6] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987 | MR
[7] Volchkov V. V., “Novye teoremy o srednem dlya reshenii uravneniya Gelmgoltsa”, Matem. sb., 184:7 (1993), 71–78 | MR | Zbl
[8] Volchkov V. V., “Ob odnoi probleme Zaltsmana i ee obobscheniyakh”, Matem. zametki, 53:2 (1993), 30–36 | MR | Zbl
[9] Volchkov V. V., “Novye teoremy o dvukh radiusakh v teorii garmonicheskikh funktsii”, Izv. RAN. Ser. matem., 58:1 (1994), 182–194 | MR | Zbl
[10] Volchkov V. V., “Morera type theorems on the unit disk”, Anal. Math., 20 (1994), 49–63 | DOI | MR | Zbl
[11] Volchkov V. V., “Okonchatelnyi variant lokalnoi teoremy o dvukh radiusakh”, Matem. sb., 186:6 (1995), 15–34 | MR | Zbl
[12] Volchkov V. V., “Novye teoremy o srednem dlya polianaliticheskikh funktsii”, Matem. zametki, 56:3 (1994), 20–28 | MR | Zbl
[13] Volchkov V. V., “Okonchatelnyi variant teoremy o srednem v teorii garmonicheskikh funktsii”, Matem. zametki, 59:3 (1996), 351–358 | MR | Zbl
[14] Volchkov V. V., “Teoremy o dvukh radiusakh na prostranstvakh postoyannoi krivizny”, Dokl. RAN, 347:3 (1996), 300–302 | MR | Zbl
[15] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl
[16] Smith I. D., “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Proc. Cambridge Philos. Soc., 72 (1972), 403–416 | DOI | MR | Zbl
[17] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl
[18] Korenev B. G., Vvedenie v teoriyu besselevykh funktsii, Nauka, M., 1971 | MR | Zbl
[19] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbb C^n$, Mir, M., 1984 | MR | Zbl
[20] Williams S. A., “A partial solution of the Ponyseiu problem”, Math. Ann., 223 (1976), 183–190 | DOI | MR | Zbl
[21] Postnikov M. M., Lektsii po geometrii. Semestr III. Gladkie mnogoobraziya, Nauka, M., 1987 | MR | Zbl