Solution of the support problem for several function classes
Sbornik. Mathematics, Tome 188 (1997) no. 9, pp. 1279-1294 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Several classes of functions with zero integrals over all balls of a fixed radius are studied. A description of functions in such classes as series in special functions is obtained and a theorem on a removable singularity is proved. These results make it possible to solve completely the support problem for several classes of functions with zero ball averages. As a consequence, a far-reaching generalization of the well-known Zalcman's two-radii theorem is obtained.
@article{SM_1997_188_9_a1,
     author = {V. V. Volchkov},
     title = {Solution of the~support problem for several function classes},
     journal = {Sbornik. Mathematics},
     pages = {1279--1294},
     year = {1997},
     volume = {188},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_9_a1/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - Solution of the support problem for several function classes
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1279
EP  - 1294
VL  - 188
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_9_a1/
LA  - en
ID  - SM_1997_188_9_a1
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T Solution of the support problem for several function classes
%J Sbornik. Mathematics
%D 1997
%P 1279-1294
%V 188
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1997_188_9_a1/
%G en
%F SM_1997_188_9_a1
V. V. Volchkov. Solution of the support problem for several function classes. Sbornik. Mathematics, Tome 188 (1997) no. 9, pp. 1279-1294. http://geodesic.mathdoc.fr/item/SM_1997_188_9_a1/

[1] Zalcman L., “A bibliographic survey of the Pompeiu problem”, Approximation by solutions of partial differential equations, eds. Fuglede B. et al., Kluwer Acad. Publ., 1992, 185–194 | MR | Zbl

[2] Sitaram A., “Fourier analysis and determining sets for Radon measures on $\mathbb R^n$”, Illinois J. Math., 28 (1984), 339–347 | MR | Zbl

[3] Shahshahani M., Sitaram A., “The Pompeiu problem in exterior domains in symmetric spaces”, Contemp. Math., 63 (1987), 267–277 | MR | Zbl

[4] Eguchi M., “An application of topological Paley–Wiener theorems to invariant differential equations on symmetric spacer”, Lect. Notes in Math., 739, Springer-Verlag, Berlin, 1979, 192–206 | MR

[5] Berenstein C. A., Gay R., Yger A., “The three squares theorem, a local version”, Analysis and partial differential equations, ed. Sadosky C., Marcel Deccer, New York, 1990, 35–50 | MR

[6] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987 | MR

[7] Volchkov V. V., “Novye teoremy o srednem dlya reshenii uravneniya Gelmgoltsa”, Matem. sb., 184:7 (1993), 71–78 | MR | Zbl

[8] Volchkov V. V., “Ob odnoi probleme Zaltsmana i ee obobscheniyakh”, Matem. zametki, 53:2 (1993), 30–36 | MR | Zbl

[9] Volchkov V. V., “Novye teoremy o dvukh radiusakh v teorii garmonicheskikh funktsii”, Izv. RAN. Ser. matem., 58:1 (1994), 182–194 | MR | Zbl

[10] Volchkov V. V., “Morera type theorems on the unit disk”, Anal. Math., 20 (1994), 49–63 | DOI | MR | Zbl

[11] Volchkov V. V., “Okonchatelnyi variant lokalnoi teoremy o dvukh radiusakh”, Matem. sb., 186:6 (1995), 15–34 | MR | Zbl

[12] Volchkov V. V., “Novye teoremy o srednem dlya polianaliticheskikh funktsii”, Matem. zametki, 56:3 (1994), 20–28 | MR | Zbl

[13] Volchkov V. V., “Okonchatelnyi variant teoremy o srednem v teorii garmonicheskikh funktsii”, Matem. zametki, 59:3 (1996), 351–358 | MR | Zbl

[14] Volchkov V. V., “Teoremy o dvukh radiusakh na prostranstvakh postoyannoi krivizny”, Dokl. RAN, 347:3 (1996), 300–302 | MR | Zbl

[15] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl

[16] Smith I. D., “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Proc. Cambridge Philos. Soc., 72 (1972), 403–416 | DOI | MR | Zbl

[17] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[18] Korenev B. G., Vvedenie v teoriyu besselevykh funktsii, Nauka, M., 1971 | MR | Zbl

[19] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbb C^n$, Mir, M., 1984 | MR | Zbl

[20] Williams S. A., “A partial solution of the Ponyseiu problem”, Math. Ann., 223 (1976), 183–190 | DOI | MR | Zbl

[21] Postnikov M. M., Lektsii po geometrii. Semestr III. Gladkie mnogoobraziya, Nauka, M., 1987 | MR | Zbl