Widths of the unit ball in $H^\infty$ in weighted spaces~$L_q(\mu)$
Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1259-1267

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of the widths of the unit ball in the Hardy space $H^\infty$ in weighted spaces $L_q(\mu)$ is carried out. Sharp lower estimates of these widths in terms of the capacity of the support of the measure $\mu$ are obtained. The precise values of the widths are calculated for Blaschke lemniscates. For the measures $d\mu =p\,dS$, where $dS$ is plane Lebesgue measure and $p$ is a positive continuous weight, an asymptotic formula is found.
@article{SM_1997_188_8_a9,
     author = {O. G. Parfenov},
     title = {Widths of the unit ball in $H^\infty$ in weighted spaces~$L_q(\mu)$},
     journal = {Sbornik. Mathematics},
     pages = {1259--1267},
     publisher = {mathdoc},
     volume = {188},
     number = {8},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_8_a9/}
}
TY  - JOUR
AU  - O. G. Parfenov
TI  - Widths of the unit ball in $H^\infty$ in weighted spaces~$L_q(\mu)$
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1259
EP  - 1267
VL  - 188
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_8_a9/
LA  - en
ID  - SM_1997_188_8_a9
ER  - 
%0 Journal Article
%A O. G. Parfenov
%T Widths of the unit ball in $H^\infty$ in weighted spaces~$L_q(\mu)$
%J Sbornik. Mathematics
%D 1997
%P 1259-1267
%V 188
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_8_a9/
%G en
%F SM_1997_188_8_a9
O. G. Parfenov. Widths of the unit ball in $H^\infty$ in weighted spaces~$L_q(\mu)$. Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1259-1267. http://geodesic.mathdoc.fr/item/SM_1997_188_8_a9/