$q$-integral representations of modified $q$-Bessel functions and $q$-Macdonald functions
Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1235-1258
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $q$-analogues of modified Bessel functions and Macdonald functions were defined in the previous paper of the authors as general solutions of certain second-order difference equations. Several representations of these functions based on the Jackson integral are presented.
@article{SM_1997_188_8_a8,
     author = {M. A. Olshanetsky and V.-B. K. Rogov},
     title = {$q$-integral representations of modified $q${-Bessel} functions and $q${-Macdonald} functions},
     journal = {Sbornik. Mathematics},
     pages = {1235--1258},
     year = {1997},
     volume = {188},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_8_a8/}
}
TY  - JOUR
AU  - M. A. Olshanetsky
AU  - V.-B. K. Rogov
TI  - $q$-integral representations of modified $q$-Bessel functions and $q$-Macdonald functions
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1235
EP  - 1258
VL  - 188
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_8_a8/
LA  - en
ID  - SM_1997_188_8_a8
ER  - 
%0 Journal Article
%A M. A. Olshanetsky
%A V.-B. K. Rogov
%T $q$-integral representations of modified $q$-Bessel functions and $q$-Macdonald functions
%J Sbornik. Mathematics
%D 1997
%P 1235-1258
%V 188
%N 8
%U http://geodesic.mathdoc.fr/item/SM_1997_188_8_a8/
%G en
%F SM_1997_188_8_a8
M. A. Olshanetsky; V.-B. K. Rogov. $q$-integral representations of modified $q$-Bessel functions and $q$-Macdonald functions. Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1235-1258. http://geodesic.mathdoc.fr/item/SM_1997_188_8_a8/

[1] Olshanetskii M. A., Rogov V.-B. K., “Modifitsirovannye $q$-funktsii Beksselya i $q$-funktsii Makdonalda”, Matem. sb., 187:10 (1996), 109–128 | MR

[2] Jackson F. H., “The application of basic numbers to Bessel's and Legendre's functions”, Proc. London Math. Soc. (2), 2 (1905), 192–220 | DOI

[3] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | MR | Zbl

[4] Vaksman L., Korogodskii L., “Algebra ogranichennykh funktsii na kvantovoi gruppe dvizhenii ploskosti i $q$-analogi funktsii Besselya”, Dokl. AN SSSR, 304:5 (1989), 1036–1040 | MR | Zbl

[5] Floreanini R., Vinet L., “Addition formulas for $q$-Bessel functions”, J. Math. Phys., 33 (1992), 2984–2988 | DOI | MR | Zbl

[6] Koelink H. T., “The quantum group of plane motions and the Hahn–Exton $q$-Bessel function”, Duke Math. J., 76 (1994), 483–508 | DOI | MR | Zbl

[7] Jacquet H. P. B., “Fonctions de Whittaker associees aux groupes de Chevalley”, Bull. Soc. Math. France, 95 (1967), 243–309 | MR | Zbl

[8] Hashizume M., “Whittaker functions on semisimple Lie groups”, Hiroshima Math. J., 12 (1982), 259–293 | MR | Zbl

[9] Olshanetsky M., Rogov V., “Liouville quantum mechanics on a lattice from geometry of quantum Lorentz group”, J. Phys. A, 27 (1994), 4669–4683 | DOI | MR | Zbl

[10] Gasper Dzh., Rakhman M., Bazisnye gipergeometricheskie ryady, Mir, M., 1993 | MR | Zbl

[11] Brychkov A., Prudnikov Yu., Marychev O., Integraly i ryady, T. 1, Nauka, M., 1986 | MR | Zbl

[12] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1966 | MR