On the spectra of first order irregular operator equations
Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1213-1234

Voir la notice de l'article provenant de la source Math-Net.Ru

The distribution of the spectrum $\sigma L=P\sigma L\cup C\sigma L\cup R\sigma L$ of the operator $L=L(\mu ,\alpha ,a,A)$ in the complex plane $\mathbb C$ is studied. The operator $L$ is the closure in $H=\mathscr L_2(0,b)\otimes \mathfrak H$ of the operator $t^\alpha aD_t+A$ originally defined on smooth functions $u(t)\colon [0,b]\to \mathfrak H$ satisfying the condition $\mu u(0)-u(b)=0$, where $\alpha \in \mathbb R$, $a\in \mathbb C$, $D_t\equiv d/dt$, $A$ is a model operator in a Hilbert space $\mathfrak H$ and $\mu \in \overline {\mathbb C}$. Conditions (criteria) in terms of the parameter $\alpha$ ensuring that the eigenfunctions of the operator $L\colon H\to H$ make up a complete system, a minimal system, or a (Riesz) basis in the Hilbert space $H$ are obtained.
@article{SM_1997_188_8_a7,
     author = {V. V. Kornienko},
     title = {On the spectra of first order irregular operator equations},
     journal = {Sbornik. Mathematics},
     pages = {1213--1234},
     publisher = {mathdoc},
     volume = {188},
     number = {8},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_8_a7/}
}
TY  - JOUR
AU  - V. V. Kornienko
TI  - On the spectra of first order irregular operator equations
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1213
EP  - 1234
VL  - 188
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_8_a7/
LA  - en
ID  - SM_1997_188_8_a7
ER  - 
%0 Journal Article
%A V. V. Kornienko
%T On the spectra of first order irregular operator equations
%J Sbornik. Mathematics
%D 1997
%P 1213-1234
%V 188
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_8_a7/
%G en
%F SM_1997_188_8_a7
V. V. Kornienko. On the spectra of first order irregular operator equations. Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1213-1234. http://geodesic.mathdoc.fr/item/SM_1997_188_8_a7/