On the spectra of first order irregular operator equations
Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1213-1234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The distribution of the spectrum $\sigma L=P\sigma L\cup C\sigma L\cup R\sigma L$ of the operator $L=L(\mu ,\alpha ,a,A)$ in the complex plane $\mathbb C$ is studied. The operator $L$ is the closure in $H=\mathscr L_2(0,b)\otimes \mathfrak H$ of the operator $t^\alpha aD_t+A$ originally defined on smooth functions $u(t)\colon [0,b]\to \mathfrak H$ satisfying the condition $\mu u(0)-u(b)=0$, where $\alpha \in \mathbb R$, $a\in \mathbb C$, $D_t\equiv d/dt$, $A$ is a model operator in a Hilbert space $\mathfrak H$ and $\mu \in \overline {\mathbb C}$. Conditions (criteria) in terms of the parameter $\alpha$ ensuring that the eigenfunctions of the operator $L\colon H\to H$ make up a complete system, a minimal system, or a (Riesz) basis in the Hilbert space $H$ are obtained.
@article{SM_1997_188_8_a7,
     author = {V. V. Kornienko},
     title = {On the spectra of first order irregular operator equations},
     journal = {Sbornik. Mathematics},
     pages = {1213--1234},
     year = {1997},
     volume = {188},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_8_a7/}
}
TY  - JOUR
AU  - V. V. Kornienko
TI  - On the spectra of first order irregular operator equations
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1213
EP  - 1234
VL  - 188
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_8_a7/
LA  - en
ID  - SM_1997_188_8_a7
ER  - 
%0 Journal Article
%A V. V. Kornienko
%T On the spectra of first order irregular operator equations
%J Sbornik. Mathematics
%D 1997
%P 1213-1234
%V 188
%N 8
%U http://geodesic.mathdoc.fr/item/SM_1997_188_8_a7/
%G en
%F SM_1997_188_8_a7
V. V. Kornienko. On the spectra of first order irregular operator equations. Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1213-1234. http://geodesic.mathdoc.fr/item/SM_1997_188_8_a7/

[1] Dezin A. A., “O slaboi i silnoi irregulyarnosti”, Differents. uravneniya, 17:10 (1981), 1851–1858 | MR | Zbl

[2] Dezin A. A., Obschie voprosy teorii granichnykh zadach, Nauka, M., 1980 | MR | Zbl

[3] Romanko V. K., “O sobstvennykh znacheniyakh kraevykh zadach dlya nekotorykh uravnenii, menyayuschikh tip”, Differents. uravneniya, 19:10 (1983), 1759–1764 | MR | Zbl

[4] Kornienko V. V., “K spektram silno irregulyarnykh uravnenii”, Differents. uravneniya, 31:11 (1995), 1907–1912 | MR

[5] Dezin A. A., “Vyrozhdayuschiesya operatornye uravneniya”, Matem. sb., 115 (157):3 (7) (1981), 323–336 | MR | Zbl

[6] Tepoyan L. P., Vyrozhdayuschiesya differentsialno-operatornye uravneniya chetvertogo poryadka, Diss. $\dots$ kand. fiz.-matem. nauk, MIAN, M., 1986

[7] Kislov N. V., Neodnorodnye granichnye zadachi dlya differentsialno-operatornykh uravnenii, Diss. $\dots$ dokt. fiz.-matem. nauk, MEI, M., 1988

[8] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[9] Kornienko V. V., “O gladkosti reshenii irregulyarnykh uravnenii”, Differents. uravneniya, 25:9 (1989), 1572–1577 | MR | Zbl

[10] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR