On the largest nilpotent ideal in algebras satisfying Capelli identities
Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1203-1211

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that in any finitely generated algebra of finite signature over an arbitrary field or commutative associative Noetherian ring satisfying the Capelli identities of some order there exists a largest nilpotent ideal.
@article{SM_1997_188_8_a6,
     author = {K. A. Zubrilin},
     title = {On the largest nilpotent ideal in algebras satisfying {Capelli} identities},
     journal = {Sbornik. Mathematics},
     pages = {1203--1211},
     publisher = {mathdoc},
     volume = {188},
     number = {8},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_8_a6/}
}
TY  - JOUR
AU  - K. A. Zubrilin
TI  - On the largest nilpotent ideal in algebras satisfying Capelli identities
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1203
EP  - 1211
VL  - 188
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_8_a6/
LA  - en
ID  - SM_1997_188_8_a6
ER  - 
%0 Journal Article
%A K. A. Zubrilin
%T On the largest nilpotent ideal in algebras satisfying Capelli identities
%J Sbornik. Mathematics
%D 1997
%P 1203-1211
%V 188
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_8_a6/
%G en
%F SM_1997_188_8_a6
K. A. Zubrilin. On the largest nilpotent ideal in algebras satisfying Capelli identities. Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1203-1211. http://geodesic.mathdoc.fr/item/SM_1997_188_8_a6/