On the largest nilpotent ideal in algebras satisfying Capelli identities
Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1203-1211
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that in any finitely generated algebra of finite signature over an arbitrary field or commutative associative Noetherian ring satisfying the Capelli identities of some order there exists a largest nilpotent ideal.
@article{SM_1997_188_8_a6,
author = {K. A. Zubrilin},
title = {On the largest nilpotent ideal in algebras satisfying {Capelli} identities},
journal = {Sbornik. Mathematics},
pages = {1203--1211},
publisher = {mathdoc},
volume = {188},
number = {8},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_8_a6/}
}
K. A. Zubrilin. On the largest nilpotent ideal in algebras satisfying Capelli identities. Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1203-1211. http://geodesic.mathdoc.fr/item/SM_1997_188_8_a6/