Periodic $\lambda$-rings and exponents of finite groups
Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1183-1190
Voir la notice de l'article provenant de la source Math-Net.Ru
A $\lambda$-ring is said to be $n$-periodic if its Adams operators satisfy the relation $\psi^{i+n}=\psi^i$ for each $i$. The quotient by the radical of the free periodic $\lambda$-ring generated by one element is described. Using this description, the order of a finite group is shown to divide the group's exponent to the power equal to the dimension of an arbitrary faithful complex representation.
@article{SM_1997_188_8_a4,
author = {A. A. Davydov},
title = {Periodic $\lambda$-rings and exponents of finite groups},
journal = {Sbornik. Mathematics},
pages = {1183--1190},
publisher = {mathdoc},
volume = {188},
number = {8},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_8_a4/}
}
A. A. Davydov. Periodic $\lambda$-rings and exponents of finite groups. Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1183-1190. http://geodesic.mathdoc.fr/item/SM_1997_188_8_a4/