Divergence everywhere of the~Fourier series of continuous functions of several variables
Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1153-1170
Voir la notice de l'article provenant de la source Math-Net.Ru
The Fourier series of a function $f$ of $n$ real variables is said to be
$\lambda$-convergent at a point $\vec x$ for $\lambda \geqslant 1$ if there exists the limit
$$
\lim _{\min \limits _kM_k\to +\infty}S_{\vec M}(\vec x,f)
$$
over all indices $\vec M=(M_1,\dots ,M_n)$ such that $1/\lambda \leqslant M_k/M_j\leqslant \lambda$ for all $k$ and $j$. An example of a continuous function of $2m$ variables with modulus of continuity
$$
\omega (F,\delta )=\underset {\delta\to +0}O\Bigl (\ln ^{-m}\frac 1\delta \Bigr)
$$
is constructed such that the Fourier series of $F$ with respect to the trigonometric system $\lambda$-diverges everywhere for an arbitrary fixed $\lambda >1$.
@article{SM_1997_188_8_a2,
author = {A. N. Bakhvalov},
title = {Divergence everywhere of {the~Fourier} series of continuous functions of several variables},
journal = {Sbornik. Mathematics},
pages = {1153--1170},
publisher = {mathdoc},
volume = {188},
number = {8},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_8_a2/}
}
A. N. Bakhvalov. Divergence everywhere of the~Fourier series of continuous functions of several variables. Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1153-1170. http://geodesic.mathdoc.fr/item/SM_1997_188_8_a2/