Divergence everywhere of the~Fourier series of continuous functions of several variables
Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1153-1170

Voir la notice de l'article provenant de la source Math-Net.Ru

The Fourier series of a function $f$ of $n$ real variables is said to be $\lambda$-convergent at a point $\vec x$ for $\lambda \geqslant 1$ if there exists the limit $$ \lim _{\min \limits _kM_k\to +\infty}S_{\vec M}(\vec x,f) $$ over all indices $\vec M=(M_1,\dots ,M_n)$ such that $1/\lambda \leqslant M_k/M_j\leqslant \lambda$ for all $k$ and $j$. An example of a continuous function of $2m$ variables with modulus of continuity $$ \omega (F,\delta )=\underset {\delta\to +0}O\Bigl (\ln ^{-m}\frac 1\delta \Bigr) $$ is constructed such that the Fourier series of $F$ with respect to the trigonometric system $\lambda$-diverges everywhere for an arbitrary fixed $\lambda >1$.
@article{SM_1997_188_8_a2,
     author = {A. N. Bakhvalov},
     title = {Divergence everywhere of {the~Fourier} series of continuous functions of several variables},
     journal = {Sbornik. Mathematics},
     pages = {1153--1170},
     publisher = {mathdoc},
     volume = {188},
     number = {8},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_8_a2/}
}
TY  - JOUR
AU  - A. N. Bakhvalov
TI  - Divergence everywhere of the~Fourier series of continuous functions of several variables
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1153
EP  - 1170
VL  - 188
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_8_a2/
LA  - en
ID  - SM_1997_188_8_a2
ER  - 
%0 Journal Article
%A A. N. Bakhvalov
%T Divergence everywhere of the~Fourier series of continuous functions of several variables
%J Sbornik. Mathematics
%D 1997
%P 1153-1170
%V 188
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_8_a2/
%G en
%F SM_1997_188_8_a2
A. N. Bakhvalov. Divergence everywhere of the~Fourier series of continuous functions of several variables. Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1153-1170. http://geodesic.mathdoc.fr/item/SM_1997_188_8_a2/