The spectral type of the rearrangements $T_{\alpha,\beta}$
Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1119-1152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method of geometric models is proposed and applied to the study of the spectral properties of the classical transformations $T_{\alpha,\beta}$. It is proved that the class of ergodic transformations under consideration with absolutely continuous and mixing components contains no transformation with a non-simple spectrum. A criterion for the ergodicity of the transformations $T_{\alpha,\beta}$ is obtained in terms of the geometric models. The multiplicity function of the spectrum of $T_{\alpha ,\beta}$ is determined for any $n$ when $\alpha$ is the golden section.
@article{SM_1997_188_8_a1,
     author = {O. N. Ageev},
     title = {The spectral type of the rearrangements $T_{\alpha,\beta}$},
     journal = {Sbornik. Mathematics},
     pages = {1119--1152},
     year = {1997},
     volume = {188},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_8_a1/}
}
TY  - JOUR
AU  - O. N. Ageev
TI  - The spectral type of the rearrangements $T_{\alpha,\beta}$
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1119
EP  - 1152
VL  - 188
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_8_a1/
LA  - en
ID  - SM_1997_188_8_a1
ER  - 
%0 Journal Article
%A O. N. Ageev
%T The spectral type of the rearrangements $T_{\alpha,\beta}$
%J Sbornik. Mathematics
%D 1997
%P 1119-1152
%V 188
%N 8
%U http://geodesic.mathdoc.fr/item/SM_1997_188_8_a1/
%G en
%F SM_1997_188_8_a1
O. N. Ageev. The spectral type of the rearrangements $T_{\alpha,\beta}$. Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1119-1152. http://geodesic.mathdoc.fr/item/SM_1997_188_8_a1/

[1] Katok A. B., Stëpin A. M., “Ob approksimatsiyakh ergodicheskikh dinamicheskikh sistem periodicheskimi preobrazovaniyami”, Dokl. AN SSSR, 171 (1966), 1268–1271 | MR | Zbl

[2] Katznelson Y., Ornstein D. S., “The differentiability of the conjugation of certain diffeomorphisms of the circle”, Ergodic Theory Dynam. Systems, 9 (1989), 643–680 | MR | Zbl

[3] Ornstein D. S., “On the root problem in ergodic theory”, Proc. Sixth. Berkeley Sympos. Math. Statist and Probab., V. II, 1967, 347–356 | MR

[4] Bourgain J., On the spectral type of Ornstein's class one transformations, Preprint, IHES, France, 1992, p. 1–11 | MR

[5] Helson H., Parry W., “Cocycles and spectra”, Ark. Mat., 16 (1978), 195–206 | DOI | MR | Zbl

[6] Syan Dun E., “Minimalnye mnozhestva i sosuschestvovanie pochti periodicheskikh tochek preobrazovanii zamknutogo intervala”, Dokl. AN SSSR, 309:5 (1989), 1049–1051

[7] Ageev O. N., “Peremeshivanie v komponentakh i perekladyvaniya”, UMN, 49:2 (1994), 143–144 | MR | Zbl

[8] Stëpin A. M., “O svyazi approksimativnykh i spektralnykh svoistv metricheskikh avtomorfizmov”, Matem. zametki, 13:3 (1973), 403–409 | MR

[9] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl