Modular permutation representations of $\operatorname {PSL}(n,p)$
Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1107-1117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Invariant lattices in the irreducible module associated with a complex permutation representation of the group $\operatorname {PSL}(n,p)$, $n>2$ are studied. The submodule structure of a permutation module of this group over a finite field is described.
@article{SM_1997_188_8_a0,
     author = {K. S. Abdukhalikov},
     title = {Modular permutation representations of $\operatorname {PSL}(n,p)$},
     journal = {Sbornik. Mathematics},
     pages = {1107--1117},
     year = {1997},
     volume = {188},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_8_a0/}
}
TY  - JOUR
AU  - K. S. Abdukhalikov
TI  - Modular permutation representations of $\operatorname {PSL}(n,p)$
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1107
EP  - 1117
VL  - 188
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_8_a0/
LA  - en
ID  - SM_1997_188_8_a0
ER  - 
%0 Journal Article
%A K. S. Abdukhalikov
%T Modular permutation representations of $\operatorname {PSL}(n,p)$
%J Sbornik. Mathematics
%D 1997
%P 1107-1117
%V 188
%N 8
%U http://geodesic.mathdoc.fr/item/SM_1997_188_8_a0/
%G en
%F SM_1997_188_8_a0
K. S. Abdukhalikov. Modular permutation representations of $\operatorname {PSL}(n,p)$. Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1107-1117. http://geodesic.mathdoc.fr/item/SM_1997_188_8_a0/

[1] Ivanov D. N., “Ortogonalnye razlozheniya algebr Li tipa $A_{p-1}$ i $D_n$ s konechnym chislom podobnykh invariantnykh podreshetok”, Vestn. MGU. Ser. 1. Matem., mekh., 1989, no. 2, 40–43 | MR | Zbl

[2] Plesken W., “On absolutely irreducible representations of orders”, Number theory and algebra, Acad. Press, New York, 1977, 241–262 | MR

[3] Bondal A. I., Kostrikin A. I., Fam Khyu Ten, “Invariantnye reshetki, reshetka Licha i ee chetnye unimodulyarnye analogi v algebrakh $A_{p-1}$”, Matem. sb., 130 (172):4 (8) (1986), 435–464 | MR | Zbl

[4] Abdukhalikov K. S., “Tselochislennye invariantnye reshetki v algebrakh Li tipa $A_{p^m-1}$”, Matem. sb., 184:4 (1993), 61–104 | MR | Zbl

[5] Abdukhalikov K. S., “Tselochislennye reshetki, assotsiirovannye s konechnoi affinnoi gruppoi”, Matem. sb., 185:12 (1994), 3–18 | MR | Zbl

[6] Burichenko V. P., “Invariantnye reshetki v module Steinberga i ikh gruppy izometrii”, Matem. sb., 184:12 (1993), 145–156 | MR | Zbl

[7] Zalesskii A. E., Suprunenko I. D., Modulyarnye podstanovochnye predstavleniya i fragment matritsy razlozheniya dlya simplekticheskoi i spetsialnoi lineinoi gruppy nad konechnym polem, Preprint No 16 (286), Institut matematiki AN BSSR, Minsk, 1987 | MR

[8] Mortimer B., “The modular permutation representations of the known doubly transitive groups”, Proc. London Math. Soc., 41 (1980), 1–20 | DOI | MR | Zbl

[9] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR

[10] Gorenstein D., Finite groups, Harper and Row, New York, 1968 | MR | Zbl