Modular permutation representations of $\operatorname {PSL}(n,p)$
Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1107-1117

Voir la notice de l'article provenant de la source Math-Net.Ru

Invariant lattices in the irreducible module associated with a complex permutation representation of the group $\operatorname {PSL}(n,p)$, $n>2$ are studied. The submodule structure of a permutation module of this group over a finite field is described.
@article{SM_1997_188_8_a0,
     author = {K. S. Abdukhalikov},
     title = {Modular permutation representations of $\operatorname {PSL}(n,p)$},
     journal = {Sbornik. Mathematics},
     pages = {1107--1117},
     publisher = {mathdoc},
     volume = {188},
     number = {8},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_8_a0/}
}
TY  - JOUR
AU  - K. S. Abdukhalikov
TI  - Modular permutation representations of $\operatorname {PSL}(n,p)$
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1107
EP  - 1117
VL  - 188
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_8_a0/
LA  - en
ID  - SM_1997_188_8_a0
ER  - 
%0 Journal Article
%A K. S. Abdukhalikov
%T Modular permutation representations of $\operatorname {PSL}(n,p)$
%J Sbornik. Mathematics
%D 1997
%P 1107-1117
%V 188
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_8_a0/
%G en
%F SM_1997_188_8_a0
K. S. Abdukhalikov. Modular permutation representations of $\operatorname {PSL}(n,p)$. Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1107-1117. http://geodesic.mathdoc.fr/item/SM_1997_188_8_a0/