A criterion for orbital equivalence of integrable Hamiltonian systems in the vicinity of elliptic orbits. An orbital invariant in the Lagrange problem
Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 1085-1105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we obtain a criterion for the continuous and smooth orbital equivalence of integrable Hamiltonian systems with $n$ degrees of freedom in the vicinity of compact elliptic orbits. Moreover, we construct a complete orbital invariant for a non-degenerate integrable Hamiltonian system with two degrees of freedom in a neighbourhood of an elliptic singular point, and propose a rule from which to compute this orbital invariant. The orbital invariant is computed for integrable Lagrange systems in rigid body dynamics. In this way we find an explicit decomposition of all Lagrange systems into classes of orbitally equivalent ones in the vicinity of equilibria.
@article{SM_1997_188_7_a6,
     author = {O. E. Orel},
     title = {A criterion for orbital equivalence of integrable {Hamiltonian} systems in the~vicinity of elliptic orbits. {An~orbital} invariant in {the~Lagrange} problem},
     journal = {Sbornik. Mathematics},
     pages = {1085--1105},
     year = {1997},
     volume = {188},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_7_a6/}
}
TY  - JOUR
AU  - O. E. Orel
TI  - A criterion for orbital equivalence of integrable Hamiltonian systems in the vicinity of elliptic orbits. An orbital invariant in the Lagrange problem
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1085
EP  - 1105
VL  - 188
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_7_a6/
LA  - en
ID  - SM_1997_188_7_a6
ER  - 
%0 Journal Article
%A O. E. Orel
%T A criterion for orbital equivalence of integrable Hamiltonian systems in the vicinity of elliptic orbits. An orbital invariant in the Lagrange problem
%J Sbornik. Mathematics
%D 1997
%P 1085-1105
%V 188
%N 7
%U http://geodesic.mathdoc.fr/item/SM_1997_188_7_a6/
%G en
%F SM_1997_188_7_a6
O. E. Orel. A criterion for orbital equivalence of integrable Hamiltonian systems in the vicinity of elliptic orbits. An orbital invariant in the Lagrange problem. Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 1085-1105. http://geodesic.mathdoc.fr/item/SM_1997_188_7_a6/

[1] Bolsinov A. V., Fomenko A. T., “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii. I; II”, Matem. sb., 185:4 (1994), 27–80 ; 5, 27–78 | MR | Zbl

[2] Bolsinov A. V., “Methods of calculation of the Fomenko–Zieschang invariant”, Adv. Sov. Math., 4 (1991), 147–184 | MR

[3] Eliasson L. H., “Normal form for Hamiltonian systems with Poisson commuting integrals – elliptic case”, Comm. Math. Helv., 65 (1990), 4–35 | DOI | MR | Zbl

[4] Birkgof Dzh. D., Dinamicheskie sistemy, Gostekhizdat, M.–L., 1941

[5] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[6] Duistermaat J. J., “On global action-angle coordinates”, Comm. Pure Appl. Math., 33 (1980), 687–706 | DOI | MR | Zbl

[7] Oshemkov A. A., “Fomenko invariants for the main integrable cases of the rigid body motion equation”, Adv. Sov. Math., 6 (1991), 67–146 | MR | Zbl

[8] Orel O. E., Takakhashi Sh., “Traektornaya klassifikatsiya integriruemykh zadach Lagranzha i Goryacheva–Chaplygina metodami kompyuternogo analiza”, Matem. sb., 187:1 (1996), 95–112 | MR | Zbl