Completeness of systems of eigenfunctions for the~Sturm--Liouville operator with potential depending on the~spectral parameter and for one non-linear problem
Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 1071-1084

Voir la notice de l'article provenant de la source Math-Net.Ru

The eigenvalue problem for the Sturm–Liouville operator on the closed interval $[0,1]$ with potential depending on the spectral parameter and with zero Dirichlet boundary conditions is considered first. It is proved under certain assumptions about the potential that if a system of eigenfunctions of this problem contains a unique function with $n$ zeros in the interval $(0,1)$ for each non-negative integer $n$, then it is complete in the space $L_2(0,1)$ if and only if the functions in this system are linearly independent in $L_2(0,1)$. Next, this result is used in the study of the spectral problem for a certain non-linear operator of Sturm–Liouville type. The completeness in $L_2(0,1)$ of the corresponding eigenfunctions is proved.
@article{SM_1997_188_7_a5,
     author = {P. E. Zhidkov},
     title = {Completeness of systems of eigenfunctions for {the~Sturm--Liouville} operator with potential depending on the~spectral parameter and for one non-linear problem},
     journal = {Sbornik. Mathematics},
     pages = {1071--1084},
     publisher = {mathdoc},
     volume = {188},
     number = {7},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_7_a5/}
}
TY  - JOUR
AU  - P. E. Zhidkov
TI  - Completeness of systems of eigenfunctions for the~Sturm--Liouville operator with potential depending on the~spectral parameter and for one non-linear problem
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1071
EP  - 1084
VL  - 188
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_7_a5/
LA  - en
ID  - SM_1997_188_7_a5
ER  - 
%0 Journal Article
%A P. E. Zhidkov
%T Completeness of systems of eigenfunctions for the~Sturm--Liouville operator with potential depending on the~spectral parameter and for one non-linear problem
%J Sbornik. Mathematics
%D 1997
%P 1071-1084
%V 188
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_7_a5/
%G en
%F SM_1997_188_7_a5
P. E. Zhidkov. Completeness of systems of eigenfunctions for the~Sturm--Liouville operator with potential depending on the~spectral parameter and for one non-linear problem. Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 1071-1084. http://geodesic.mathdoc.fr/item/SM_1997_188_7_a5/