@article{SM_1997_188_7_a5,
author = {P. E. Zhidkov},
title = {Completeness of systems of eigenfunctions for {the~Sturm{\textendash}Liouville} operator with potential depending on the~spectral parameter and for one non-linear problem},
journal = {Sbornik. Mathematics},
pages = {1071--1084},
year = {1997},
volume = {188},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_7_a5/}
}
TY - JOUR AU - P. E. Zhidkov TI - Completeness of systems of eigenfunctions for the Sturm–Liouville operator with potential depending on the spectral parameter and for one non-linear problem JO - Sbornik. Mathematics PY - 1997 SP - 1071 EP - 1084 VL - 188 IS - 7 UR - http://geodesic.mathdoc.fr/item/SM_1997_188_7_a5/ LA - en ID - SM_1997_188_7_a5 ER -
%0 Journal Article %A P. E. Zhidkov %T Completeness of systems of eigenfunctions for the Sturm–Liouville operator with potential depending on the spectral parameter and for one non-linear problem %J Sbornik. Mathematics %D 1997 %P 1071-1084 %V 188 %N 7 %U http://geodesic.mathdoc.fr/item/SM_1997_188_7_a5/ %G en %F SM_1997_188_7_a5
P. E. Zhidkov. Completeness of systems of eigenfunctions for the Sturm–Liouville operator with potential depending on the spectral parameter and for one non-linear problem. Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 1071-1084. http://geodesic.mathdoc.fr/item/SM_1997_188_7_a5/
[1] Zhidkov P. E., O zadache na sobstvennye znacheniya dlya operatora Shturma–Liuvillya s potentsialom, zavisyaschim ot spektralnogo parametra, Preprint OIYaI. R5-96-52, Dubna, 1996 | MR
[2] Logunov A. A., Tavkhelidze A. N., “Quasi-optical approach in quantum field theory”, Nuovo Cim., 29:2 (1963), 380–399 | DOI | MR
[3] Kadyshevsky V. G., Mir-Kasimov R. M., Skachkov N. B., “Quasi-potential approach and the expansion in relativistic spherical functions”, Nuovo Cim., 55A:2 (1968), 233–257 | DOI
[4] Gabov S. F., Malysheva G. Yu., “Ob odnoi spektralnoi zadache, svyazannoi s kolebaniyami vyazkoi stratifitsirovannoi zhidkosti”, Zhurn. vych. matem. i matem. fiz., 24:6 (1984), 893–899 | MR | Zbl
[5] Khoromskii B. N., Makarenko T. M., Nikonov E. G., Skachkov N. B., Zhidkov E. P., “Numerical methods for solving relativistic equations describing bound states of a double-particle system”, Proceedings of the International Conference on Programming and Mathematical methods for Solving Physical Problems (Dubna, 1993), ed. Yu. Yu. Lobanov, E. P. Zhidkov, World Scientific Publ., 1994, 210–214
[6] Jaulent M., Jean C., “The inverse scattering problem for a class of potentials depending on energy”, Commun. Math. Phys., 28 (1972), 177–220 | DOI | MR
[7] Antonowicz M., Fordy A. P., “A family of completely integrable multi-hamiltonian systems”, Physics Letters A, 122:2 (1987), 95–99 | DOI | MR
[8] Antonowicz M., Fordy A. P., “Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems”, Commun. Math. Phys., 124 (1989), 465–486 | DOI | MR | Zbl
[9] Keldysh M. V., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh operatorov”, Dokl. AN SSSR, 77:1 (1951), 11–14 | MR | Zbl
[10] Krein M. G., Langer G. K., “K teorii kvadratichnykh puchkov samosopryazhennykh operatorov”, Dokl. AN SSSR, 154:6 (1964), 1258–1261 | MR | Zbl
[11] Makhmudov A. P., “O polnote sobstvennykh elementov nekotorykh nelineinykh operatornykh uravnenii”, Dokl. AN SSSR, 263:1 (1982), 23–27 | MR
[12] Lions P. L., “The Choquard equation and related questions”, Nonlinear Anal.: Theory, Meth. Appl., 4:6 (1980), 1063–1073 | DOI | MR