Completeness of systems of eigenfunctions for the Sturm–Liouville operator with potential depending on the spectral parameter and for one non-linear problem
Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 1071-1084 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The eigenvalue problem for the Sturm–Liouville operator on the closed interval $[0,1]$ with potential depending on the spectral parameter and with zero Dirichlet boundary conditions is considered first. It is proved under certain assumptions about the potential that if a system of eigenfunctions of this problem contains a unique function with $n$ zeros in the interval $(0,1)$ for each non-negative integer $n$, then it is complete in the space $L_2(0,1)$ if and only if the functions in this system are linearly independent in $L_2(0,1)$. Next, this result is used in the study of the spectral problem for a certain non-linear operator of Sturm–Liouville type. The completeness in $L_2(0,1)$ of the corresponding eigenfunctions is proved.
@article{SM_1997_188_7_a5,
     author = {P. E. Zhidkov},
     title = {Completeness of systems of eigenfunctions for {the~Sturm{\textendash}Liouville} operator with potential depending on the~spectral parameter and for one non-linear problem},
     journal = {Sbornik. Mathematics},
     pages = {1071--1084},
     year = {1997},
     volume = {188},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_7_a5/}
}
TY  - JOUR
AU  - P. E. Zhidkov
TI  - Completeness of systems of eigenfunctions for the Sturm–Liouville operator with potential depending on the spectral parameter and for one non-linear problem
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1071
EP  - 1084
VL  - 188
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_7_a5/
LA  - en
ID  - SM_1997_188_7_a5
ER  - 
%0 Journal Article
%A P. E. Zhidkov
%T Completeness of systems of eigenfunctions for the Sturm–Liouville operator with potential depending on the spectral parameter and for one non-linear problem
%J Sbornik. Mathematics
%D 1997
%P 1071-1084
%V 188
%N 7
%U http://geodesic.mathdoc.fr/item/SM_1997_188_7_a5/
%G en
%F SM_1997_188_7_a5
P. E. Zhidkov. Completeness of systems of eigenfunctions for the Sturm–Liouville operator with potential depending on the spectral parameter and for one non-linear problem. Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 1071-1084. http://geodesic.mathdoc.fr/item/SM_1997_188_7_a5/

[1] Zhidkov P. E., O zadache na sobstvennye znacheniya dlya operatora Shturma–Liuvillya s potentsialom, zavisyaschim ot spektralnogo parametra, Preprint OIYaI. R5-96-52, Dubna, 1996 | MR

[2] Logunov A. A., Tavkhelidze A. N., “Quasi-optical approach in quantum field theory”, Nuovo Cim., 29:2 (1963), 380–399 | DOI | MR

[3] Kadyshevsky V. G., Mir-Kasimov R. M., Skachkov N. B., “Quasi-potential approach and the expansion in relativistic spherical functions”, Nuovo Cim., 55A:2 (1968), 233–257 | DOI

[4] Gabov S. F., Malysheva G. Yu., “Ob odnoi spektralnoi zadache, svyazannoi s kolebaniyami vyazkoi stratifitsirovannoi zhidkosti”, Zhurn. vych. matem. i matem. fiz., 24:6 (1984), 893–899 | MR | Zbl

[5] Khoromskii B. N., Makarenko T. M., Nikonov E. G., Skachkov N. B., Zhidkov E. P., “Numerical methods for solving relativistic equations describing bound states of a double-particle system”, Proceedings of the International Conference on Programming and Mathematical methods for Solving Physical Problems (Dubna, 1993), ed. Yu. Yu. Lobanov, E. P. Zhidkov, World Scientific Publ., 1994, 210–214

[6] Jaulent M., Jean C., “The inverse scattering problem for a class of potentials depending on energy”, Commun. Math. Phys., 28 (1972), 177–220 | DOI | MR

[7] Antonowicz M., Fordy A. P., “A family of completely integrable multi-hamiltonian systems”, Physics Letters A, 122:2 (1987), 95–99 | DOI | MR

[8] Antonowicz M., Fordy A. P., “Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems”, Commun. Math. Phys., 124 (1989), 465–486 | DOI | MR | Zbl

[9] Keldysh M. V., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh operatorov”, Dokl. AN SSSR, 77:1 (1951), 11–14 | MR | Zbl

[10] Krein M. G., Langer G. K., “K teorii kvadratichnykh puchkov samosopryazhennykh operatorov”, Dokl. AN SSSR, 154:6 (1964), 1258–1261 | MR | Zbl

[11] Makhmudov A. P., “O polnote sobstvennykh elementov nekotorykh nelineinykh operatornykh uravnenii”, Dokl. AN SSSR, 263:1 (1982), 23–27 | MR

[12] Lions P. L., “The Choquard equation and related questions”, Nonlinear Anal.: Theory, Meth. Appl., 4:6 (1980), 1063–1073 | DOI | MR