Completeness of systems of eigenfunctions for the~Sturm--Liouville operator with potential depending on the~spectral parameter and for one non-linear problem
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 1071-1084
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The eigenvalue problem for the Sturm–Liouville operator on the closed interval  $[0,1]$ with potential depending on the spectral parameter and with zero Dirichlet boundary conditions is considered first. It is proved under certain assumptions about the potential that if a system of  eigenfunctions of this problem contains a unique function with $n$ zeros in the interval $(0,1)$  for each non-negative integer $n$, then it  is complete in the space $L_2(0,1)$ if and only if  the functions in this system are linearly independent in $L_2(0,1)$. Next, this result is used in the study of the spectral problem for a certain non-linear operator of Sturm–Liouville type.  The completeness in $L_2(0,1)$ of the corresponding eigenfunctions  is proved.
			
            
            
            
          
        
      @article{SM_1997_188_7_a5,
     author = {P. E. Zhidkov},
     title = {Completeness of systems of eigenfunctions for {the~Sturm--Liouville} operator with potential depending on the~spectral parameter and for one non-linear problem},
     journal = {Sbornik. Mathematics},
     pages = {1071--1084},
     publisher = {mathdoc},
     volume = {188},
     number = {7},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_7_a5/}
}
                      
                      
                    TY - JOUR AU - P. E. Zhidkov TI - Completeness of systems of eigenfunctions for the~Sturm--Liouville operator with potential depending on the~spectral parameter and for one non-linear problem JO - Sbornik. Mathematics PY - 1997 SP - 1071 EP - 1084 VL - 188 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1997_188_7_a5/ LA - en ID - SM_1997_188_7_a5 ER -
%0 Journal Article %A P. E. Zhidkov %T Completeness of systems of eigenfunctions for the~Sturm--Liouville operator with potential depending on the~spectral parameter and for one non-linear problem %J Sbornik. Mathematics %D 1997 %P 1071-1084 %V 188 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1997_188_7_a5/ %G en %F SM_1997_188_7_a5
P. E. Zhidkov. Completeness of systems of eigenfunctions for the~Sturm--Liouville operator with potential depending on the~spectral parameter and for one non-linear problem. Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 1071-1084. http://geodesic.mathdoc.fr/item/SM_1997_188_7_a5/
