Representation varieties of the~fundamental groups of non-orientable surfaces
Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 997-1039

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma_g$ be the fundamental group of a compact non-orientable surface of genus $g$ and let $K$ be an algebraically closed field of characteristic 0. The structure of the representation varieties $R(\Gamma_g,\mathrm{GL}_n(K))$, $R(\Gamma_g,\mathrm{SL}_n(K))$ of $\Gamma_g$ into $\mathrm{GL}_n(K)$ and $\mathrm{SL}_n(K)$ and of the character varieties $X(\Gamma_g,\mathrm{GL}_n(K))$ is described; namely, the number of their irreducible components and their dimensions are determined and their birational properties are investigated. It is proved, in particular, that all the irreducible components of $R(\Gamma_g,\mathrm{GL}_n(K))$ are $\mathbb Q$-rational varieties.
@article{SM_1997_188_7_a2,
     author = {V. V. Benyash-Krivets and V. I. Chernousov},
     title = {Representation varieties of the~fundamental groups of non-orientable surfaces},
     journal = {Sbornik. Mathematics},
     pages = {997--1039},
     publisher = {mathdoc},
     volume = {188},
     number = {7},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_7_a2/}
}
TY  - JOUR
AU  - V. V. Benyash-Krivets
AU  - V. I. Chernousov
TI  - Representation varieties of the~fundamental groups of non-orientable surfaces
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 997
EP  - 1039
VL  - 188
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_7_a2/
LA  - en
ID  - SM_1997_188_7_a2
ER  - 
%0 Journal Article
%A V. V. Benyash-Krivets
%A V. I. Chernousov
%T Representation varieties of the~fundamental groups of non-orientable surfaces
%J Sbornik. Mathematics
%D 1997
%P 997-1039
%V 188
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_7_a2/
%G en
%F SM_1997_188_7_a2
V. V. Benyash-Krivets; V. I. Chernousov. Representation varieties of the~fundamental groups of non-orientable surfaces. Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 997-1039. http://geodesic.mathdoc.fr/item/SM_1997_188_7_a2/