Representation varieties of the~fundamental groups of non-orientable surfaces
Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 997-1039
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Gamma_g$ be the fundamental group of a compact non-orientable surface of genus $g$ and let $K$ be an algebraically closed field of characteristic 0. The structure of the representation varieties $R(\Gamma_g,\mathrm{GL}_n(K))$,
$R(\Gamma_g,\mathrm{SL}_n(K))$ of
$\Gamma_g$ into $\mathrm{GL}_n(K)$ and $\mathrm{SL}_n(K)$ and of the character varieties $X(\Gamma_g,\mathrm{GL}_n(K))$ is described; namely, the number of their irreducible components and their dimensions are determined and their birational properties are investigated. It is proved, in particular, that all the irreducible components of
$R(\Gamma_g,\mathrm{GL}_n(K))$ are $\mathbb Q$-rational varieties.
@article{SM_1997_188_7_a2,
author = {V. V. Benyash-Krivets and V. I. Chernousov},
title = {Representation varieties of the~fundamental groups of non-orientable surfaces},
journal = {Sbornik. Mathematics},
pages = {997--1039},
publisher = {mathdoc},
volume = {188},
number = {7},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_7_a2/}
}
TY - JOUR AU - V. V. Benyash-Krivets AU - V. I. Chernousov TI - Representation varieties of the~fundamental groups of non-orientable surfaces JO - Sbornik. Mathematics PY - 1997 SP - 997 EP - 1039 VL - 188 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1997_188_7_a2/ LA - en ID - SM_1997_188_7_a2 ER -
V. V. Benyash-Krivets; V. I. Chernousov. Representation varieties of the~fundamental groups of non-orientable surfaces. Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 997-1039. http://geodesic.mathdoc.fr/item/SM_1997_188_7_a2/