Representation varieties of the fundamental groups of non-orientable surfaces
Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 997-1039 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Gamma_g$ be the fundamental group of a compact non-orientable surface of genus $g$ and let $K$ be an algebraically closed field of characteristic 0. The structure of the representation varieties $R(\Gamma_g,\mathrm{GL}_n(K))$, $R(\Gamma_g,\mathrm{SL}_n(K))$ of $\Gamma_g$ into $\mathrm{GL}_n(K)$ and $\mathrm{SL}_n(K)$ and of the character varieties $X(\Gamma_g,\mathrm{GL}_n(K))$ is described; namely, the number of their irreducible components and their dimensions are determined and their birational properties are investigated. It is proved, in particular, that all the irreducible components of $R(\Gamma_g,\mathrm{GL}_n(K))$ are $\mathbb Q$-rational varieties.
@article{SM_1997_188_7_a2,
     author = {V. V. Benyash-Krivets and V. I. Chernousov},
     title = {Representation varieties of the~fundamental groups of non-orientable surfaces},
     journal = {Sbornik. Mathematics},
     pages = {997--1039},
     year = {1997},
     volume = {188},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_7_a2/}
}
TY  - JOUR
AU  - V. V. Benyash-Krivets
AU  - V. I. Chernousov
TI  - Representation varieties of the fundamental groups of non-orientable surfaces
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 997
EP  - 1039
VL  - 188
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_7_a2/
LA  - en
ID  - SM_1997_188_7_a2
ER  - 
%0 Journal Article
%A V. V. Benyash-Krivets
%A V. I. Chernousov
%T Representation varieties of the fundamental groups of non-orientable surfaces
%J Sbornik. Mathematics
%D 1997
%P 997-1039
%V 188
%N 7
%U http://geodesic.mathdoc.fr/item/SM_1997_188_7_a2/
%G en
%F SM_1997_188_7_a2
V. V. Benyash-Krivets; V. I. Chernousov. Representation varieties of the fundamental groups of non-orientable surfaces. Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 997-1039. http://geodesic.mathdoc.fr/item/SM_1997_188_7_a2/

[1] Mamford D., Algebraicheskaya geometriya, Mir, M., 1979 | MR

[2] Lubotzky A., Magid A., “Varieties of representations of finitely generated groups”, Mem. Amer. Math. Soc., 58 (1985), 1–116 | MR

[3] Rudnick Z., “Representation varieties of solvable groups”, J. Pure Appl. Algebra, 45 (1987), 261–272 | DOI | MR | Zbl

[4] Goldman W., “Topological components of spaces of representations”, Invent. Math., 93 (1988), 557–607 | DOI | MR | Zbl

[5] Rapinchuk A. S., Benyash-Krivetz V. V., Chernousov V. I., “Representation varieties of the fundamental groups of compact orientable surfaces”, Israel J. Math., 93 (1996), 29–71 | DOI | MR | Zbl

[6] Simpson C. T., “Moduli of representations of the fundamental group of a smooth projective variety. I; II”, Publ. Math. I. H. E. S., 79 (1994), 47–129 | MR | Zbl

[7] Springer T. A., Steinberg R., “Klassy sopryazhennykh elementov”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 162–262 | MR

[8] Djoković D. Ž., “Cosets of centralizers in the general linear groups contain regular elements”, Proceedings of the Eighth Haifa Matrix Theory Conference (Haifa, June 7–10), 1993

[9] Khamfri Dzh., Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[10] Leng S., Algebra, Mir, M., 1968

[11] Thompson R. C., “Commutators in the special and general linear groups”, Trans. Amer. Math. Soc., 101:3 (1961), 16–33 | DOI | MR | Zbl

[12] Borel A., Lineinye algebraicheskie gruppy, Mir, M., 1972 | MR | Zbl

[13] Pirs R., Assotsiativnye algebry, Mir, M., 1986 | MR

[14] Lam T. Y., The algebraic theory of quadratic forms, Addison Wesley–Benjamin, Reading, 1973 | MR

[15] Procesi C., “Non-commutative affine rings”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Sez. Ia (8), 6 (1967), 239–255 | MR

[16] Formanek E., “The center of the ring of 3 by 3 generic matrices”, Linear and Multilinear Algebra, 7 (1979), 203–212 | DOI | MR | Zbl