Topology of spaces of probability measures
Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 973-995 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the space $\widehat P(X)$ of Radon probability measures on a metric space $X$ and its subspaces $P_c(X)$, $P_d(X)$ and $P_\omega (X)$ of continuous measures, discrete measures, and finitely supported measures, respectively. It is proved that for any completely metrizable space $X$, the space $\widehat P(X)$ is homeomorphic to a Hilbert space. A topological classification is obtained for the pairs $(\widehat P(K),\widehat P(X))$, $(\widehat P(K),P_d(Y))$ and $(\widehat P(K),P_c(Z))$, where $K$ is a metric compactum, $X$ an everywhere dense Borel subset of $K$, $Y$ an everywhere dense $F_{\sigma \delta }$-set of $K$, and $Z$ an everywhere uncountable everywhere dense Borel subset of $K$ of sufficiently high Borel class. Conditions on the pair $(X,Y)$ are found that are necessary and sufficient for the pair $(\widehat P(X),P_\omega (Y))$ to be homeomorphic to $(l^2(A),l^2_f(A))$.
@article{SM_1997_188_7_a1,
     author = {T. O. Banakh and T. N. Radul},
     title = {Topology of spaces of probability measures},
     journal = {Sbornik. Mathematics},
     pages = {973--995},
     year = {1997},
     volume = {188},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_7_a1/}
}
TY  - JOUR
AU  - T. O. Banakh
AU  - T. N. Radul
TI  - Topology of spaces of probability measures
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 973
EP  - 995
VL  - 188
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_7_a1/
LA  - en
ID  - SM_1997_188_7_a1
ER  - 
%0 Journal Article
%A T. O. Banakh
%A T. N. Radul
%T Topology of spaces of probability measures
%J Sbornik. Mathematics
%D 1997
%P 973-995
%V 188
%N 7
%U http://geodesic.mathdoc.fr/item/SM_1997_188_7_a1/
%G en
%F SM_1997_188_7_a1
T. O. Banakh; T. N. Radul. Topology of spaces of probability measures. Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 973-995. http://geodesic.mathdoc.fr/item/SM_1997_188_7_a1/

[1] Banakh T. O., Radul T. M., “Pro funktor imovirnosnikh radonivskikh mir”, Dopovidi AN Ukraïni, 1994, no. 8, 16–20 | MR

[2] Toruńczyk H., “On $CE$-images of the Hilbert cube and characterization of $Q$-manifilds”, Fund. Math., 106 (1980), 31–40 | MR | Zbl

[3] Toruńczyk H., “Characterizing Hilbert space topology”, Fund. Math., 111 (1981), 247–262 | MR | Zbl

[4] Bestvina M., Mogilski J., “Characterizing certain incomplete infinite-dimensional absolute retracts”, Michigan Math. J., 33:3 (1986), 291–313 | DOI | MR | Zbl

[5] Varadarain V. S., “Mery na topologicheskikh prostranstvakh”, Matem. sb., 55:1 (1961), 33–100

[6] Fedorchuk V. V., “Veroyatnostnye mery v topologii”, UMN, 46:1 (1991), 41–80 | MR | Zbl

[7] Banakh T. O., “Topologiya prostranstv veroyatnostnykh mer, I”, Matematichni studiï, 1995, no. 5, 65–87 | MR | Zbl

[8] Banakh T. O., “Topologiya prostranstv veroyatnostnykh mer, II”, Matematichni studiï, 1995, no. 5, 88–106 | MR | Zbl

[9] Banakh T. O., Koti R., “Topologicheskaya klassifikatsiya prostranstv veroyatnostnykh mer koanaliticheskikh mnozhestv”, Matem. zametki, 55:1 (1994), 10–19 | MR | Zbl

[10] Banakh T. O., “Topologicheskaya klassifikatsiya prostranstv veroyatnostnykh mer na proektivnykh prostranstvakh”, Matem. zametki, 61:3 (1997), 441–444 | MR | Zbl

[11] Radul T. N., “O nekotorykh predstavleniyakh psevdovnutrennosti gilbertova kuba v prostranstvakh veroyatnostnykh mer”, Vestnik MGU. Ser. I. Matem., mekh., 1993, no. 3, 79–81 | MR | Zbl

[12] Zhuraev T. F., “Prostranstvo vsekh veroyatnostnykh mer s konechnymi nositelyami gomeomorfno beskonechnomernomu lineinomu prostranstvu”, Obschaya topologiya. Prostranstva i otobrazheniya, Izd-vo MGU, M., 1989, 66–70 | MR

[13] Toruńczyk H., “Concerning locally homotopy negligible sets and characterization of $l_2$-manifolds”, Fund. Math., 101 (1978), 93–110 | MR | Zbl

[14] Bessaga C., Pełczyński A., Selected topics in infinite-dimensional topology, PWN, Warsaw, 1975 | MR | Zbl

[15] van Mill J., Infinite dimensional topology: prerequisites and introduction, North-Holland, Amsterdam, 1989 | MR

[16] Banakh T., Radul T., Zarichnyi M., Absorbing sets in infinite-dimensional manifolds, VNTL Publishers, Lviv, 1996 | MR | Zbl

[17] Banakh T. O., “O topologii konstruktsii Milnora universalnogo $G$-rassloeniya”, Sib. matem. zhurn., 33:1 (1992), 16–25 | MR | Zbl

[18] Kuratovskii K., Topologiya, T. I, Mir, M., 1966 | MR

[19] Curtis D. W., Dobrowolski T., Mogilski J., “Some applications of the topological characterizations of the sigma-compact spaces $l_f^2$ and $\Sigma$”, Trans. Amer. Math. Soc., 284 (1984), 837–846 | DOI | MR | Zbl

[20] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[21] Kechris A. S., Classical descriptive set theory, Graduate texts in Mathematics, 156, Springer-Verlag, New York, 1995 | MR | Zbl

[22] Banakh T., “The strongly universal property in convex sets”, Matematichni Studiï (to appear)

[23] Toruńczyk H., “Absolute retracts as factors of normed linear spaces”, Fund. Math., 86 (1974), 53–67 | MR | Zbl

[24] Toruńczyk H., “A correction of two papers concerning Hilbert manifolds”, Fund. Math., 125 (1985), 89–93 | MR | Zbl

[25] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Izd-vo MGU, M., 1988 | Zbl

[26] Engelking R., Obschaya topologiya, Mir, M., 1986

[27] West J. E., “The ambient homeomorphy of an incomplete subspace of incomplete subspace of infinite-dimensional Hilbert spaces”, Pacific J. Math., 34:1 (1970), 257–267 | MR | Zbl

[28] Chepmen T., Lektsii o $Q$-mnogoobraziyakh, Mir, M., 1981 | MR