On continuity of geodesic frameworks of flows on surfaces
Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 955-972 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For flows on an orientable closed surface $M_g$ of larger genus (that is, of genus $g\geqslant 2$) a special geodesic distribution (the geodesic framework of the flow) is constructed that consists of geodesics with the same asymptotic directions as the trajectories of the flow and that is a complete topological invariant of the irrational flows on such surfaces. The problem of the dependence of the geodesic framework on a perturbation of the flow (or on the parameter of a family of flows) is considered. It is shown that an irreducible elementary irrational geodesic framework of a flow depends continuously on the perturbation of the flow (which is analogous to the continuous dependence of an irrational Poincare rotation number on a perturbation of a flow).
@article{SM_1997_188_7_a0,
     author = {S. Kh. Aranson and E. V. Zhuzhoma and V. S. Medvedev},
     title = {On continuity of geodesic frameworks of flows on surfaces},
     journal = {Sbornik. Mathematics},
     pages = {955--972},
     year = {1997},
     volume = {188},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_7_a0/}
}
TY  - JOUR
AU  - S. Kh. Aranson
AU  - E. V. Zhuzhoma
AU  - V. S. Medvedev
TI  - On continuity of geodesic frameworks of flows on surfaces
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 955
EP  - 972
VL  - 188
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_7_a0/
LA  - en
ID  - SM_1997_188_7_a0
ER  - 
%0 Journal Article
%A S. Kh. Aranson
%A E. V. Zhuzhoma
%A V. S. Medvedev
%T On continuity of geodesic frameworks of flows on surfaces
%J Sbornik. Mathematics
%D 1997
%P 955-972
%V 188
%N 7
%U http://geodesic.mathdoc.fr/item/SM_1997_188_7_a0/
%G en
%F SM_1997_188_7_a0
S. Kh. Aranson; E. V. Zhuzhoma; V. S. Medvedev. On continuity of geodesic frameworks of flows on surfaces. Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 955-972. http://geodesic.mathdoc.fr/item/SM_1997_188_7_a0/

[1] Anosov D. V., “Flows on closed surfaces and behavior of trajectories lifted to the universal covering plane”, J. Dyn. Control Syst., 1:1 (1995), 125–138 | DOI | MR | Zbl

[2] Aranson S. Kh., Grines V. Z., “O nekotorykh invariantakh dinamicheskikh sistem na dvumernykh mnogoobraziyakh (neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti tranzitivnykh dinamicheskikh sistem)”, Matem. sb., 90:3 (1973), 372–402 | MR | Zbl

[3] Gardiner C. J., “The structure of flows exhibiting nontrivial recurrence on two-dimensional manifolds”, J. Diff. Equat., 57:1 (1985), 138–158 | DOI | MR | Zbl

[4] Anosov D. V., Solodov V. V., “Dinamicheskie sistemy s giperbolicheskim povedeniem. Glava 1. Giperbolicheskie mnozhestva”, Dinamicheskie sistemy – 9, Itogi nauki i tekhn. Sovrem. probl. matem. Fundam. napravleniya, 66, eds. Anosov D. V. i dr., VINITI, M., 1991, 12–99 | MR | Zbl

[5] Anosov D. V., “O povedenii traektorii na ploskosti Evklida ili Lobachevskogo, nakryvayuschikh traektorii potokov na zamknutykh poverkhnostyakh, 1”, Izv. AN SSSR. Ser. matem., 51:1 (1987), 16–43 | MR | Zbl

[6] Aranson S., Belizky G., Zhuzhoma E., An Introduction to Qualitive Theory of Dynamical Systems on Surfaces, Amer. Math. Soc., Math. Monogr., 1996 | MR

[7] Aranson S. Kh., Grines V. Z., “O predstavlenii minimalnykh mnozhestv potokov na dvumernykh mnogoobraziyakh geodezicheskimi liniyami”, Izv. AN SSSR. Ser. matem., 42:1 (1978), 104–129 | MR | Zbl

[8] Levitt G., “Foliations and laminations on hyperbolic surfaces”, Topology, 22:2 (1983), 119–135 | DOI | MR | Zbl

[9] Maier A. G., “O traektoriyakh na orientiruemykh poverkhnostyakh”, Matem. sb., 12:1 (1943), 71–84 | MR

[10] Medvedev V. S., “O novom tipe bifurkatsii na mnogoobraziyakh”, Matem. sb., 113:3 (1980), 487–492 | MR | Zbl

[11] Medvedev V. S., “O bifurkatsii “katastrofa golubogo neba” na dvumernykh mnogoobraziyakh”, Matem. zametki, 51:1 (1992), 118–125 | MR | Zbl

[12] Aranson S. Kh., “Ob otsutstvii nezamknutykh ustoichivykh po Puassonu polutraektorii i traektorii, dvoyakasimptoticheskikh k dvoinomu predelnomu tsiklu, u dinamicheskikh sistem pervoi stepeni negrubosti na orientiruemykh dvumernykh mnogoobraziyakh”, Matem. sb., 76:2 (1968), 214–230 | MR | Zbl

[13] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1990 | MR | Zbl

[14] Palis J., de Melo J. W., Geometric Theory of Dynamical Systems. An Introduction, Springer-Verlag, New York, 1982 | MR | Zbl

[15] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Teoriya bifurkatsii dinamicheskikh sistem na ploskosti, Nauka, M., 1967 | MR

[16] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966 | MR | Zbl