On continuity of geodesic frameworks of flows on surfaces
Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 955-972

Voir la notice de l'article provenant de la source Math-Net.Ru

For flows on an orientable closed surface $M_g$ of larger genus (that is, of genus $g\geqslant 2$) a special geodesic distribution (the geodesic framework of the flow) is constructed that consists of geodesics with the same asymptotic directions as the trajectories of the flow and that is a complete topological invariant of the irrational flows on such surfaces. The problem of the dependence of the geodesic framework on a perturbation of the flow (or on the parameter of a family of flows) is considered. It is shown that an irreducible elementary irrational geodesic framework of a flow depends continuously on the perturbation of the flow (which is analogous to the continuous dependence of an irrational Poincare rotation number on a perturbation of a flow).
@article{SM_1997_188_7_a0,
     author = {S. Kh. Aranson and E. V. Zhuzhoma and V. S. Medvedev},
     title = {On continuity of geodesic frameworks of flows on surfaces},
     journal = {Sbornik. Mathematics},
     pages = {955--972},
     publisher = {mathdoc},
     volume = {188},
     number = {7},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_7_a0/}
}
TY  - JOUR
AU  - S. Kh. Aranson
AU  - E. V. Zhuzhoma
AU  - V. S. Medvedev
TI  - On continuity of geodesic frameworks of flows on surfaces
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 955
EP  - 972
VL  - 188
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_7_a0/
LA  - en
ID  - SM_1997_188_7_a0
ER  - 
%0 Journal Article
%A S. Kh. Aranson
%A E. V. Zhuzhoma
%A V. S. Medvedev
%T On continuity of geodesic frameworks of flows on surfaces
%J Sbornik. Mathematics
%D 1997
%P 955-972
%V 188
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_7_a0/
%G en
%F SM_1997_188_7_a0
S. Kh. Aranson; E. V. Zhuzhoma; V. S. Medvedev. On continuity of geodesic frameworks of flows on surfaces. Sbornik. Mathematics, Tome 188 (1997) no. 7, pp. 955-972. http://geodesic.mathdoc.fr/item/SM_1997_188_7_a0/