@article{SM_1997_188_6_a6,
author = {V. V. Filippov},
title = {Homology properties of the~sets of solutions to ordinary},
journal = {Sbornik. Mathematics},
pages = {933--953},
year = {1997},
volume = {188},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_6_a6/}
}
V. V. Filippov. Homology properties of the sets of solutions to ordinary. Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 933-953. http://geodesic.mathdoc.fr/item/SM_1997_188_6_a6/
[1] Bielawski R., Górniewicz L., Plaskacz S., “Topological approach to differential inclusions on closed subset of $\mathbb R^n$”, Dynam. Report, 1992, no. 1, 225–250 | MR | Zbl
[2] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Izd-vo MGU, M., 1988 | Zbl
[3] Filippov V. V., “Topologicheskoe stroenie prostranstv reshenii obyknovennykh differentsialnykh uravnenii”, UMN, 48:1 (1993), 103–154 | MR | Zbl
[4] Filippov V. V., Prostranstva reshenii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1993 | MR | Zbl
[5] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR
[6] Aleksandrov P. S., Vvedenie v gomologicheskuyu teoriyu razmernosti, Nauka, M., 1975 | MR
[7] Mawhin J., Zanolin F., “A continuation approach to fourth order superlinear periodic boundary value problems”, Topol. Methods Nonlinear Anal., 2:1 (1993), 55–74 | MR | Zbl
[8] Aronszajn N., “Le correspondant topologique de l'unicié dant la théorie des équations differentielles”, Ann. of Math., 43 (1942), 730–738 | DOI | MR | Zbl
[9] Filippov V. V., “O teoreme Aronshaina”, Differents. uravneniya, 33:1 (1997), 11–15 | MR