Growth of polynilpotent varieties of Lie algebras and rapidly growing entire functions
Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 913-931 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the growth function $c_n(\mathbf V)$ for a variety of Lie algebras, where $c_n(\mathbf V)$ is the dimension of the linear hull of the set of multilinear words with $n$ different letters in the free algebra $F(\mathbf V,X)$ of the variety $\mathbf V$. With every non-trivial variety $\mathbf V$ of Lie algebras there is associated its complexity function $\mathscr C(\mathbf V,z)$, which is an entire function of a complex variable. In the case of a polynilpotent variety $\mathbf V$ of Lie algebras an estimate is obtained for the complexity function; in most cases it is of infinite order. We study the connection between the growth of a rapidly growing entire function and the asymptotics of its Taylor coefficients. The basic result is the asymptotics for the function $c_n(\mathbf V)$ in the case of a polynilpotent variety $\mathbf V$. Also, we prove an analogue of Regev's theorem for Lie algebras on upper estimates for the growth of arbitrary varieties. This gives more precision to the scale of superexponential growth of varieties of Lie algebras introduced earlier by the author.
@article{SM_1997_188_6_a5,
     author = {V. M. Petrogradsky},
     title = {Growth of polynilpotent varieties of {Lie} algebras and rapidly growing entire functions},
     journal = {Sbornik. Mathematics},
     pages = {913--931},
     year = {1997},
     volume = {188},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_6_a5/}
}
TY  - JOUR
AU  - V. M. Petrogradsky
TI  - Growth of polynilpotent varieties of Lie algebras and rapidly growing entire functions
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 913
EP  - 931
VL  - 188
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_6_a5/
LA  - en
ID  - SM_1997_188_6_a5
ER  - 
%0 Journal Article
%A V. M. Petrogradsky
%T Growth of polynilpotent varieties of Lie algebras and rapidly growing entire functions
%J Sbornik. Mathematics
%D 1997
%P 913-931
%V 188
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1997_188_6_a5/
%G en
%F SM_1997_188_6_a5
V. M. Petrogradsky. Growth of polynilpotent varieties of Lie algebras and rapidly growing entire functions. Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 913-931. http://geodesic.mathdoc.fr/item/SM_1997_188_6_a5/

[1] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[2] Regev A., “Existence of polynomial identities in $A\otimes B$”, Bull. Amer. Math. Soc., 77:6 (1971), 1067–1069 | DOI | MR | Zbl

[3] Mischenko S. P., “Rost mnogoobrazii algebr Li”, UMN, 45:6 (1990), 25–45 | Zbl

[4] Volichenko I. B., “O mnogoobrazii algebr Li $\mathbf A\mathbf N_2$ nad polem kharakteristiki nul”, Dokl. AN BSSR, XXV:12 (1981), 1063–1066 | MR

[5] Petrogradskii V. M., “O tipakh sverkheksponentsialnogo rosta tozhdestv v PI-algebrakh Li”, Fund. prikl. matem., 1:4 (1995), 989–1007 | MR | Zbl

[6] Petrogradskii V. M., “O nekotorykh tipakh promezhutochnogo rosta v algebrakh Li”, UMN, 48:5 (1993), 181–182 | MR | Zbl

[7] Petrogradsky V. M., “Intermediate Growth in Lie Algebras and Their Enveloping Algebras”, J. Algebra, 179 (1996), 459–482 | DOI | MR | Zbl

[8] Grishkov A. N., “O roste mnogoobrazii algebr Li”, Matem. zametki, 44:1 (1988), 51–54 | MR

[9] Razmyslov Yu. P., Tozhdestva algebr i ikh predstavlenii, Nauka, M., 1989 | MR | Zbl

[10] Gulden Ya., Dzhekson D., Perechislitelnaya kombinatorika, Nauka, M., 1990 | MR

[11] Bahturin Yu. A., Mikhalev A. A., Petrogradsky V. M., Zaicev M. V., Infinite Dimensional Lie Superalgebras, Gruyter Expositions in Mathematics, 7, Walter de Gruyter, Berlin, 1992 | MR

[12] Shabat B. V., Vvedenie v kompleksnyi analiz, T. 1, Nauka, M., 1985 | MR

[13] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR | Zbl

[14] Goldberg A. A., Levin B. Ya., Ostrovskii I. V., “Tselye i meromorfnye funktsii”, Kompleksnyi analiz, odna peremennaya–1, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 85, VINITI, M., 5–185 | MR

[15] Fridman G. A., “Medlenno vozrastayuschie funktsii i ikh prilozhenie”, Sib. matem. zhurn., 7:5 (1966), 1139–1160 | MR | Zbl

[16] Sheremeta M. N., “O svyazi mezhdu rostom maksimuma modulya tseloi funktsii i modulyami koeffitsientov ee stepennogo razlozheniya”, Izv. vuzov. Ser. matem., 1967, no. 2(57), 100–108 | MR | Zbl