Diagonalization of operators over continuous fields of $C^*$-algebras
Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 893-911
Voir la notice de l'article provenant de la source Math-Net.Ru
A proof is given of a non-commutative analogue of the classical Hilbert–Schmidt theorem on diagonalization of a self-adjoint compact operator in a Hilbert space; namely, it is shown for a certain class of $C^*$-algebras that a self-adjoint compact operator in a Hilbert module $H_A$ over a $C^*$-algebra $A$ can be reduced to diagonal form in some larger module over a larger $W^*$-algebra, where the elements on the diagonal belong to $A$.
@article{SM_1997_188_6_a4,
author = {V. M. Manuilov},
title = {Diagonalization of operators over continuous fields of $C^*$-algebras},
journal = {Sbornik. Mathematics},
pages = {893--911},
publisher = {mathdoc},
volume = {188},
number = {6},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_6_a4/}
}
V. M. Manuilov. Diagonalization of operators over continuous fields of $C^*$-algebras. Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 893-911. http://geodesic.mathdoc.fr/item/SM_1997_188_6_a4/