Diagonalization of operators over continuous fields of $C^*$-algebras
Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 893-911

Voir la notice de l'article provenant de la source Math-Net.Ru

A proof is given of a non-commutative analogue of the classical Hilbert–Schmidt theorem on diagonalization of a self-adjoint compact operator in a Hilbert space; namely, it is shown for a certain class of $C^*$-algebras that a self-adjoint compact operator in a Hilbert module $H_A$ over a $C^*$-algebra $A$ can be reduced to diagonal form in some larger module over a larger $W^*$-algebra, where the elements on the diagonal belong to $A$.
@article{SM_1997_188_6_a4,
     author = {V. M. Manuilov},
     title = {Diagonalization of operators over continuous fields of $C^*$-algebras},
     journal = {Sbornik. Mathematics},
     pages = {893--911},
     publisher = {mathdoc},
     volume = {188},
     number = {6},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_6_a4/}
}
TY  - JOUR
AU  - V. M. Manuilov
TI  - Diagonalization of operators over continuous fields of $C^*$-algebras
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 893
EP  - 911
VL  - 188
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_6_a4/
LA  - en
ID  - SM_1997_188_6_a4
ER  - 
%0 Journal Article
%A V. M. Manuilov
%T Diagonalization of operators over continuous fields of $C^*$-algebras
%J Sbornik. Mathematics
%D 1997
%P 893-911
%V 188
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_6_a4/
%G en
%F SM_1997_188_6_a4
V. M. Manuilov. Diagonalization of operators over continuous fields of $C^*$-algebras. Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 893-911. http://geodesic.mathdoc.fr/item/SM_1997_188_6_a4/