Diagonalization of operators over continuous fields of $C^*$-algebras
Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 893-911 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A proof is given of a non-commutative analogue of the classical Hilbert–Schmidt theorem on diagonalization of a self-adjoint compact operator in a Hilbert space; namely, it is shown for a certain class of $C^*$-algebras that a self-adjoint compact operator in a Hilbert module $H_A$ over a $C^*$-algebra $A$ can be reduced to diagonal form in some larger module over a larger $W^*$-algebra, where the elements on the diagonal belong to $A$.
@article{SM_1997_188_6_a4,
     author = {V. M. Manuilov},
     title = {Diagonalization of operators over continuous fields of $C^*$-algebras},
     journal = {Sbornik. Mathematics},
     pages = {893--911},
     year = {1997},
     volume = {188},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_6_a4/}
}
TY  - JOUR
AU  - V. M. Manuilov
TI  - Diagonalization of operators over continuous fields of $C^*$-algebras
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 893
EP  - 911
VL  - 188
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_6_a4/
LA  - en
ID  - SM_1997_188_6_a4
ER  - 
%0 Journal Article
%A V. M. Manuilov
%T Diagonalization of operators over continuous fields of $C^*$-algebras
%J Sbornik. Mathematics
%D 1997
%P 893-911
%V 188
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1997_188_6_a4/
%G en
%F SM_1997_188_6_a4
V. M. Manuilov. Diagonalization of operators over continuous fields of $C^*$-algebras. Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 893-911. http://geodesic.mathdoc.fr/item/SM_1997_188_6_a4/

[1] Dixmier J., Les $C^*$-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964 | MR | Zbl

[2] Exel R., Loring T. A., “Invariants of almost commuting unitaries”, J. Funct. Anal., 95 (1991), 364–376 | DOI | MR | Zbl

[3] Paschke W. L., “Inner product modules over $B^{*}$-algebras”, Trans. Amer. Math. Soc., 182 (1973), 443–468 | DOI | MR | Zbl

[4] Paschke W. L., “The double $B$-dual of an inner product module over a $C^{*}$-algebra”, Canad. J. Math., 26 (1974), 1272–1280 | MR | Zbl

[5] Rieffel M. A., “Induced representations of $C^*$-algebras”, Adv. Math., 13 (1974), 176–257 | DOI | MR | Zbl

[6] Kasparov G. G., “Hilbert $C^*$-modules: Theorems of Stinespring and Voiculescu”, J. Operator Theory, 4 (1980), 133–150 | MR | Zbl

[7] Mischenko A. S., Fomenko A. T., “Indeks ellipticheskikh operatorov nad $C^{*}$-algebrami”, Izv. AN SSSR. Ser. matem., 43 (1979), 831–859 | MR | Zbl

[8] Lin H., “Injective Hilbert $C^*$-modules”, Pacific J. Math., 154 (1992), 131–164 | MR | Zbl

[9] Lance E. C., Hilbert $C^*$-modules – a toolkit for operator algebraists, London Mathematical Society Lecture Note Series, 210, University of Leeds, Leeds, 1993 | MR | Zbl

[10] Kadison R. V., “Diagonalizing matrices”, Amer. J. Math., 106 (1984), 1451–1468 | DOI | MR | Zbl

[11] Grove K., Pedersen G. K., “Diagonalizing matrices over $C(X)$”, J. Funct. Anal., 59 (1984), 64–89 | DOI | MR

[12] Murphy Q. J., “Diagonality in $C^{*}$-algebras”, Math. Z., 199 (1990), 279–284 | DOI | MR

[13] Zhang S., “Diagonalizing projections in multiplier algebras and in matrices over a $C^*$-algebra”, Pacific J. Math., 145 (1990), 181–200 | MR | Zbl

[14] Frank M., Manuilov V. M., “Diagonalizing “compact” operators on Hilbert $W^*$-modules”, Z. Anal. Anwendungen, 14 (1995), 33–41 | MR | Zbl

[15] Manuilov V. M., “Diagonalizatsiya kompaktnykh operatorov v gilbertovykh modulyakh nad $W^{*}$-algebrami konechnogo tipa”, UMN, 49:2 (1994), 159–160 | MR | Zbl

[16] Manuilov V. M., “Diagonalization of compact operators in Hilbert modules over finite $W^{*}$-algebras”, Ann. Global Anal. Geom., 13 (1995), 207–226 | DOI | MR | Zbl

[17] Manuilov V. M., “Diagonalizatsiya kompaktnykh operatorov v gilbertovykh modulyakh nad $C^*$-algebrami nulevogo veschestvennogo ranga”, Matem. zametki (to appear)

[18] Brown L. G., Pedersen G. K., “$C^*$-algebras of real rank zero”, J. Funct. Anal., 99 (1991), 131–149 | DOI | MR | Zbl

[19] Choi M.-D., Elliot G. A., “Density of self-adjoint elements with finite spectrum in an irrational rotation $C^*$-algebra”, Math. Scand., 67 (1990), 73–86 | MR | Zbl

[20] Bunce J., Deddens J., “A family of simple $C^*$-algebras related to weighted shift operators”, J. Funct. Anal., 19 (1975), 13–24 | DOI | MR | Zbl

[21] Sunder V. S., Thomsen K., “Unitary orbits of selfadjoints in some $C^{*}$-algebras”, Houston J. Math., 18 (1992), 127–137 | MR | Zbl

[22] Rieffel M. A., “Continuous fields of $C^*$-algebras coming from group cocycles and actions”, Math. Ann., 283 (1989), 631–643 | DOI | MR | Zbl

[23] Elliott G. A., Natsume T., Nest R., The Heisenberg group and $K$-theory, Københavns Universitet Preprint Series, No 25, 1992 | MR

[24] Rieffel M. A., “$C^*$-algebras associated with irrational rotations”, Pacific J. Math., 93 (1981), 415–429 | MR | Zbl

[25] Manuilov V. M., “O gruppe $K_0$ nepreryvnogo semeistva algebr $A_\theta$”, UMN, 44:3 (1989), 163–164 | MR