The fundamental principle for invariant subspaces of analytic functions.~II
Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 853-892
Voir la notice de l'article provenant de la source Math-Net.Ru
A differentiation-invariant closed subspace $W$ of a topological product of analytic function spaces is considered. Associated with each element $f\in W$ there is a formal series with terms that are the images of $f$ under a certain system of special projection operators in $W$.Conditions for the existence, methods of construction, and properties of these projection operators are investigated.
@article{SM_1997_188_6_a3,
author = {I. F. Krasichkov-Ternovskii},
title = {The fundamental principle for invariant subspaces of analytic {functions.~II}},
journal = {Sbornik. Mathematics},
pages = {853--892},
publisher = {mathdoc},
volume = {188},
number = {6},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_6_a3/}
}
I. F. Krasichkov-Ternovskii. The fundamental principle for invariant subspaces of analytic functions.~II. Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 853-892. http://geodesic.mathdoc.fr/item/SM_1997_188_6_a3/