The fundamental principle for invariant subspaces of analytic functions.~II
Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 853-892

Voir la notice de l'article provenant de la source Math-Net.Ru

A differentiation-invariant closed subspace $W$ of a topological product of analytic function spaces is considered. Associated with each element $f\in W$ there is a formal series with terms that are the images of $f$ under a certain system of special projection operators in $W$.Conditions for the existence, methods of construction, and properties of these projection operators are investigated.
@article{SM_1997_188_6_a3,
     author = {I. F. Krasichkov-Ternovskii},
     title = {The fundamental principle for invariant subspaces of analytic {functions.~II}},
     journal = {Sbornik. Mathematics},
     pages = {853--892},
     publisher = {mathdoc},
     volume = {188},
     number = {6},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_6_a3/}
}
TY  - JOUR
AU  - I. F. Krasichkov-Ternovskii
TI  - The fundamental principle for invariant subspaces of analytic functions.~II
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 853
EP  - 892
VL  - 188
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_6_a3/
LA  - en
ID  - SM_1997_188_6_a3
ER  - 
%0 Journal Article
%A I. F. Krasichkov-Ternovskii
%T The fundamental principle for invariant subspaces of analytic functions.~II
%J Sbornik. Mathematics
%D 1997
%P 853-892
%V 188
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_6_a3/
%G en
%F SM_1997_188_6_a3
I. F. Krasichkov-Ternovskii. The fundamental principle for invariant subspaces of analytic functions.~II. Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 853-892. http://geodesic.mathdoc.fr/item/SM_1997_188_6_a3/