Attractors of approximations to non-autonomous evolution equations
Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 843-852 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Results on the upper semicontinuous dependence on the parameter of the uniform attractors for families of semiprocesses are established. A semi-explicit spectral-difference scheme for the vorticity equation on a sphere with time-dependent right-hand side is considered. The uniform attractors in this scheme are shown to be close to the uniform attractor of the equation.
@article{SM_1997_188_6_a2,
     author = {V. M. Ipatova},
     title = {Attractors of approximations to non-autonomous evolution equations},
     journal = {Sbornik. Mathematics},
     pages = {843--852},
     year = {1997},
     volume = {188},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_6_a2/}
}
TY  - JOUR
AU  - V. M. Ipatova
TI  - Attractors of approximations to non-autonomous evolution equations
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 843
EP  - 852
VL  - 188
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_6_a2/
LA  - en
ID  - SM_1997_188_6_a2
ER  - 
%0 Journal Article
%A V. M. Ipatova
%T Attractors of approximations to non-autonomous evolution equations
%J Sbornik. Mathematics
%D 1997
%P 843-852
%V 188
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1997_188_6_a2/
%G en
%F SM_1997_188_6_a2
V. M. Ipatova. Attractors of approximations to non-autonomous evolution equations. Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 843-852. http://geodesic.mathdoc.fr/item/SM_1997_188_6_a2/

[1] Kapitanskii L. V., Kostin I. N., “Attraktory nelineinykh evolyutsionnykh uravnenii i ikh approksimatsii”, Algebra i analiz, 2:1 (1990), 114–140 | MR

[2] Chepyshov V. V., Vishik M. I., “Attractors of non-autonomous dynamical systems and their dimension”, J. Math. Pures Appl., 73 (1994), 279–333 | MR

[3] Skiba Yu. N., Matematicheskie voprosy dinamiki vyazkoi barotropnoi zhidkosti na vraschayuscheisya sfere, OVM AN SSSR, M., 1989

[4] Ilin A. A., Filatov A. N., “Uravneniya Nave–Stoksa na dvumernoi sfere i ikh odnoznachnaya razreshimost. Ustoichivost statsionarnykh reshenii”, Matematicheskaya fizika, Izd-vo LGPI, L., 1987, 126–142

[5] Filatov A. N., Ipatova V. M., “On globally stable difference schemes for the barotropic vorticity equation on a sphere”, Russian J. Numer. Anal. Math. Modelling, 11:1 (1996), 1–26 | MR | Zbl