$\mathscr H$-bijections of groups and $\mathscr H_R$-isomorphisms of group rings
Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 823-841
Cet article a éte moissonné depuis la source Math-Net.Ru
We introduce and investigate the notions indicated in the title. In particular, as an application, we prove the conjecture on the finiteness of the automorphism group of an orthogonal decomposition of an associative algebra, for all known examples of orthogonal decompositions.
@article{SM_1997_188_6_a1,
author = {D. N. Ivanov},
title = {$\mathscr H$-bijections of groups and $\mathscr H_R$-isomorphisms of group rings},
journal = {Sbornik. Mathematics},
pages = {823--841},
year = {1997},
volume = {188},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_6_a1/}
}
D. N. Ivanov. $\mathscr H$-bijections of groups and $\mathscr H_R$-isomorphisms of group rings. Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 823-841. http://geodesic.mathdoc.fr/item/SM_1997_188_6_a1/
[1] Ivanov D. N., “Avtomorfizmy ortogonalnykh razlozhenii i gruppovykh algebr rasscheplyaemykh grupp”, Matem. sb., 186:9 (1995), 77–86 | MR | Zbl
[2] Lüneburg H., Translation planes, Springer-Verlag, Berlin, 1980 | MR
[3] Artamonov V. A., Bovdi A. A., “Tselochislennye gruppovye koltsa: gruppy obratimykh elementov i klassicheskaya $K$-teoriya”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 27, VINITI, M., 1989, 3–43 | MR
[4] Zalesskii A. E., Mikhalev A. V., “Gruppovye koltsa”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 2, VINITI, M., 1973, 5–118 | MR
[5] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR