Solenoidal representations and the homology of hyperbolic attractors of diffeomorphisms of surfaces
Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 799-821 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an arbitrary connected one-dimensional hyperbolic attractor of a diffeomorphism of a closed surface (orientable or not), representations are constructed in the form of generalized solenoids generated by maps of one-dimensional complexes. The construction leads to the determination of such a representation from the union of any finite number of periodic orbits contained in the attractor. Furthermore, the number $m$ of zero-dimensional simplexes of the complex obtained is equal to the number of periodic points chosen, and the number of one-dimensional simplexes is determined by this $m$ and by the so-called boundary type of the attractor. As an application, the one-dimensional Alexandroff–Cech integral homology group of the attractor is computed. The rank of this group is also determined by the boundary type of the attractor.
@article{SM_1997_188_6_a0,
     author = {A. Yu. Zhirov},
     title = {Solenoidal representations and the~homology of hyperbolic attractors of diffeomorphisms of surfaces},
     journal = {Sbornik. Mathematics},
     pages = {799--821},
     year = {1997},
     volume = {188},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_6_a0/}
}
TY  - JOUR
AU  - A. Yu. Zhirov
TI  - Solenoidal representations and the homology of hyperbolic attractors of diffeomorphisms of surfaces
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 799
EP  - 821
VL  - 188
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_6_a0/
LA  - en
ID  - SM_1997_188_6_a0
ER  - 
%0 Journal Article
%A A. Yu. Zhirov
%T Solenoidal representations and the homology of hyperbolic attractors of diffeomorphisms of surfaces
%J Sbornik. Mathematics
%D 1997
%P 799-821
%V 188
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1997_188_6_a0/
%G en
%F SM_1997_188_6_a0
A. Yu. Zhirov. Solenoidal representations and the homology of hyperbolic attractors of diffeomorphisms of surfaces. Sbornik. Mathematics, Tome 188 (1997) no. 6, pp. 799-821. http://geodesic.mathdoc.fr/item/SM_1997_188_6_a0/

[1] Williams R. F., “One-dimensional non-wandering sets”, Topology, 6:4 (1967), 473–487 | DOI | MR | Zbl

[2] Van Dantzig D., “Über topologisch homogene Kontinua”, Fund. Math., 15 (1930), 102–125

[3] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[4] Williams R. F., “Expanding attractors”, Publ. Math. Inst. Hautes Études Scientifiques, 43 (1973), 161–203 | MR

[5] Plykin R. V., “O geometrii giperbolicheskikh attraktorov gladkikh kaskadov”, UMN, 39:6 (1984), 75–113 | MR | Zbl

[6] Zhirov A. Yu., “Giperbolicheskie attraktory diffeomorfizmov orientiruemykh poverkhnostei. 1: Kodirovanie, klassifikatsiya i nakrytiya”, Matem. sb., 185:6 (1994), 3–50 | MR | Zbl

[7] Tsishang R., Fogt E., Koldevai Kh. D., Poverkhnosti i razryvnye gruppy, Nauka, M., 1988 | MR

[8] Aranson S. Kh., Grines V. Z., “Topologicheskaya klassifikatsiya kaskadov na zamknutykh poverkhnostyakh”, UMN, 45:1 (1990), 3–32 | MR | Zbl

[9] Plykin R. V., “Istochniki i stoki $A$-diffeomorfizmov poverkhnostei”, Matem. sb., 94:2 (1974), 243–264 | MR | Zbl

[10] Stinrod N., Eilenberg S., Osnovaniya algebraicheskoi topologii, Fizmatgiz, M., 1958

[11] Plykin R. V., “O suschestvovanii prityagivayuschikh (ottalkivayuschikh) periodicheskikh tochek $A$-diffeomorfizmov proektivnoi ploskosti i butylki Kleina”, UMN, 32:3 (1977), 179 | MR | Zbl