Equivalence and characteristic connections of the~Monge--Ampere equations
Sbornik. Mathematics, Tome 188 (1997) no. 5, pp. 771-797

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is devoted to the problem of contact equivalence of the Monge–Ampere equations with two independent variables. When the Monge–Ampere equation is in general position an affine connection can be associated with it in a natural manner. This association enables us to formulate and prove a number of criteria for the contact equivalence of the Monge–Ampere equations in general position that make use of the corresponding properties of affine connections.
@article{SM_1997_188_5_a6,
     author = {D. V. Tunitsky},
     title = {Equivalence and characteristic connections of {the~Monge--Ampere} equations},
     journal = {Sbornik. Mathematics},
     pages = {771--797},
     publisher = {mathdoc},
     volume = {188},
     number = {5},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_5_a6/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - Equivalence and characteristic connections of the~Monge--Ampere equations
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 771
EP  - 797
VL  - 188
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_5_a6/
LA  - en
ID  - SM_1997_188_5_a6
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T Equivalence and characteristic connections of the~Monge--Ampere equations
%J Sbornik. Mathematics
%D 1997
%P 771-797
%V 188
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_5_a6/
%G en
%F SM_1997_188_5_a6
D. V. Tunitsky. Equivalence and characteristic connections of the~Monge--Ampere equations. Sbornik. Mathematics, Tome 188 (1997) no. 5, pp. 771-797. http://geodesic.mathdoc.fr/item/SM_1997_188_5_a6/