Approximations on compact symmetric spaces of rank~1
Sbornik. Mathematics, Tome 188 (1997) no. 5, pp. 753-769

Voir la notice de l'article provenant de la source Math-Net.Ru

On an arbitrary Riemannian symmetric space $M$ of rank 1 the Nikol'skii classes $H_p^r(M)$ are defined by considering differences along geodesics. These spaces are described in terms of the best approximations by polynomials in spherical harmonics on $M$, that is, by linear combinations of the eigenfunctions of the Laplace–Beltrami operator on $M$. The results of Nikol'skii and Lizorkin on the approximation of functions on the sphere $S^n$ are generalized.
@article{SM_1997_188_5_a5,
     author = {S. S. Platonov},
     title = {Approximations on compact symmetric spaces of rank~1},
     journal = {Sbornik. Mathematics},
     pages = {753--769},
     publisher = {mathdoc},
     volume = {188},
     number = {5},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_5_a5/}
}
TY  - JOUR
AU  - S. S. Platonov
TI  - Approximations on compact symmetric spaces of rank~1
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 753
EP  - 769
VL  - 188
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_5_a5/
LA  - en
ID  - SM_1997_188_5_a5
ER  - 
%0 Journal Article
%A S. S. Platonov
%T Approximations on compact symmetric spaces of rank~1
%J Sbornik. Mathematics
%D 1997
%P 753-769
%V 188
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_5_a5/
%G en
%F SM_1997_188_5_a5
S. S. Platonov. Approximations on compact symmetric spaces of rank~1. Sbornik. Mathematics, Tome 188 (1997) no. 5, pp. 753-769. http://geodesic.mathdoc.fr/item/SM_1997_188_5_a5/