A class of systems of quasilinear conservation laws
Sbornik. Mathematics, Tome 188 (1997) no. 5, pp. 725-751

Voir la notice de l'article provenant de la source Math-Net.Ru

Hyperbolic systems of conservation laws with a functional-calculus operator on the right-hand side are considered in the space of second-order symmetric matrices. The entropies of such systems are described. The concept of a generalized entropy solution (g.e.s.) of the corresponding Cauchy problem is introduced, the properties of g.e.s.'s are analyzed, and the lack of their uniqueness in the general case is demonstrated. Using a stronger version of the defining entropy condition, the class of strong g.e.s.'s is distinguished. The Cauchy problem under discussion is shown to be uniquely soluble in this class.
@article{SM_1997_188_5_a4,
     author = {E. Yu. Panov},
     title = {A class of systems of quasilinear conservation laws},
     journal = {Sbornik. Mathematics},
     pages = {725--751},
     publisher = {mathdoc},
     volume = {188},
     number = {5},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_5_a4/}
}
TY  - JOUR
AU  - E. Yu. Panov
TI  - A class of systems of quasilinear conservation laws
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 725
EP  - 751
VL  - 188
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_5_a4/
LA  - en
ID  - SM_1997_188_5_a4
ER  - 
%0 Journal Article
%A E. Yu. Panov
%T A class of systems of quasilinear conservation laws
%J Sbornik. Mathematics
%D 1997
%P 725-751
%V 188
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_5_a4/
%G en
%F SM_1997_188_5_a4
E. Yu. Panov. A class of systems of quasilinear conservation laws. Sbornik. Mathematics, Tome 188 (1997) no. 5, pp. 725-751. http://geodesic.mathdoc.fr/item/SM_1997_188_5_a4/