@article{SM_1997_188_5_a3,
author = {D. V. Osipov},
title = {Adele constructions of direct images of differentials and symbols},
journal = {Sbornik. Mathematics},
pages = {697--723},
year = {1997},
volume = {188},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_5_a3/}
}
D. V. Osipov. Adele constructions of direct images of differentials and symbols. Sbornik. Mathematics, Tome 188 (1997) no. 5, pp. 697-723. http://geodesic.mathdoc.fr/item/SM_1997_188_5_a3/
[1] Kato K., “Residue homomorphism in Milnor $K$-theory”, Adv. Stud. Pure Math., 2 (1983), 153–172 | MR | Zbl
[2] Serr Zh.-P., Algebraicheskie gruppy i polya klassov, Mir, M., 1968
[3] Yekutieli A., “An explicit construction of the Grothendieck residue complex”, Astérisque, 208 (1992) | MR | Zbl
[4] Parshin A. N., Fimmel T., An introduction to the higher adelic theory, Preprint | Zbl
[5] Milnor J., “Algebraic $K$-theory and quadratic forms”, Invent. Math., 9 (1969/70), 318–344 | DOI | MR
[6] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl
[7] Milnor Dzh., Vvedenie v algebraicheskuyu $K$-teoriyu, Mir, M., 1974 | MR | Zbl
[8] Quillen D., “Higher algebraic $K$-theory 1”, Algebraic $K$-theory 1, Lecture Notes in Math., 341, 1973, 85–147 | MR | Zbl