Structure of the~spectrum of the~Schrodinger operator with magnetic field in a~strip and infinite-gap potentials
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 188 (1997) no. 5, pp. 657-669
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Sturm–Liouville operator $H=-d^2/dx^2+V(x+p)$ on an interval $[a,b]$ with zero boundary conditions is considered; here $V$ is a strictly convex function of class $C^2$ on the real line $\mathbb R$ and $p$ is a numerical parameter. The dependence of the eigenvalues of $H$ on $p$ is studied. The spectral analysis of the Schrödinger  operator with magnetic field in a strip with Dirichlet boundary conditions on the boundary of the strip reduces to this problem. As a consequence of the main result the following theorem is obtained. Let $V_1$ be the restriction of $V$ to the interval $[a,b)$ and let $u$ be the periodic extension of $V_1$ on the entire axis (with period $b-a$). Then all the gaps in the spectrum of the Schrödinger operator $-d^2/dx^2+u(x)$ are non-trivial.
            
            
            
          
        
      @article{SM_1997_188_5_a1,
     author = {V. A. Geiler and M. M. Senatorov},
     title = {Structure of the~spectrum of {the~Schrodinger} operator with magnetic field in a~strip and infinite-gap potentials},
     journal = {Sbornik. Mathematics},
     pages = {657--669},
     publisher = {mathdoc},
     volume = {188},
     number = {5},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_5_a1/}
}
                      
                      
                    TY - JOUR AU - V. A. Geiler AU - M. M. Senatorov TI - Structure of the~spectrum of the~Schrodinger operator with magnetic field in a~strip and infinite-gap potentials JO - Sbornik. Mathematics PY - 1997 SP - 657 EP - 669 VL - 188 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1997_188_5_a1/ LA - en ID - SM_1997_188_5_a1 ER -
%0 Journal Article %A V. A. Geiler %A M. M. Senatorov %T Structure of the~spectrum of the~Schrodinger operator with magnetic field in a~strip and infinite-gap potentials %J Sbornik. Mathematics %D 1997 %P 657-669 %V 188 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1997_188_5_a1/ %G en %F SM_1997_188_5_a1
V. A. Geiler; M. M. Senatorov. Structure of the~spectrum of the~Schrodinger operator with magnetic field in a~strip and infinite-gap potentials. Sbornik. Mathematics, Tome 188 (1997) no. 5, pp. 657-669. http://geodesic.mathdoc.fr/item/SM_1997_188_5_a1/
